Characterisation of Incommensurate Bi₂+xSr₂-xCuO₂ by X-ray Powder Diffraction and Oxygen Content Determinations Chan Namgung Departrment of Physics, Korea Third Military Academy The composition-temperature stability region of the solid solution $Bi_2+xSr_2-xCuO_2$, phase R, has been determined. At $800^{\circ}C$, 0.15<x<0.40, and at melting temperatures 0.10<x<0.40. The x-ray powder diffraction pattern can be indexed using a pseudo-tetragonal subcell, a=b=5.390(1), c=24.59 Å, with a supercell vector q* given by $q*=n\delta b*-n\varepsilon c*$, where $\delta=0.21$, $\varepsilon=0.55$, for x=0.30 and n=1,2... both a and ε increased with x, c decreased with x and δ was independent of x. The excess oxygen content, α , was determined to be (0.18 ± 0.02) by citrate iodometry and was independent of x. The total oxygen content z, given by $z=5+x/2+\alpha$, was confirmed to be 6.33 ± 0.04 , for x=0.30, by hydrogen reduction thermogravimetry.