BRI |ITRA ZEtE FH eSS =828 1996,

AFRa Fz W ANVIY 2 HFAH AL Ao &
A Factored Wide Angle Propagation Technique

Applied to Turning Mirror Simulation

4 3

3

Feqstn AAEAT 4

Youngchul Chung
Department of Electronic Communications Engineering
Kwangwoon University

Abstract

A wide angle propagation techinque is
formulated through an expansion of the
Holmholtz operator followed by a Pade
expansion and factorization of the resulting
Its accuracy is checked through
the successful modeling of integrated
waveguide turning mirrors, indicating that
6-th order polynomial can handle as large as

55° tilt angle very accurately.

polynomials.

Various forms of wide angle beam
propagation algorithms have been developed to
overcome the limitation of the
propagation technique and to meet the need for
designing  ever evoving photonic integrated
circuits(PICs) which might include integrated
wide angle

previous

paraxial

waveguide turning mirrors or
branching
approaches include

of a Helmholtz propagation operator[1] with the
operator splitting or using a recursive Pade

waveguides. The
a higher order expansion

formulal2], or the explicit finite difference
algorithm based on the Taylor series expansion
of the amplitude Helmholtz wave equation[3].
The purpose of this letter is to introduce a
fomulation of a wide angle BPM resulting from
factoring of the denominator and numerator
polynomials which are derived from the Taylor
series expansion of the Helmholtz operator in
combination with the Crank-Nicholson Scheme.
Then we applied the wide angle BPM to the
simulation of integrated waveguide turning
mirrors and check the accuracy of various
orders of series expansion of the Helmholtz
operator.
The propagation of scalar optical wave in
the guiding structure can be described by the
amplitude Helmholtz wave equation
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where n. is the reference refractive index,
and ky=2n/Aand E is the
amplitude of the electric field. This amplitude
Helmholtz equation can be written as a

slowly varying



factored forml[4]
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The propagation of the forward going(positive

L=

we3)

z direction) wave is described by the following
wave equation:
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The formal operator solution of Eq.
form

(4) is of
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which can be further approximated through the
Pade approximation as follows:
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The accuracy of the operator solution given by
eq. (6) under various orders of Taylor series
expansion can be checked by looking at the
angled propagation in  the
homogeneous medium. The refractive index of

plane wave
the medium and the reference index are taken
be the Then the L
corresponds to sin?(8) where 8 is the angle
of plane wave propagation relative to z axis.
The phase variation of the plane wave along
the direction of z for the propagation distance
of 4z is given as

to same. operator
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orders of Taylor series expansion is plotted in

The ralative phase error for various

Fig. 1 as a function of the propagation angle,
In the calculation &y #,4z is taken to be 0.4.
A similar behavior is observed when the value
of ky#n,dz is 08 and 16.
the propagation angle larger than 50° can be
treated very accurately when the Taylor series
expansion up to order of five or more is used.

It is seen that

If we take the Taylor series expansion
of the Helmholtz operator upte order N and
performing factorization, the Eg. (6) can be
written as
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Then propagating a beam through an interval
4z can be performed by applying the N
2, ) (L= x,)
Note that in the case of a two-dimensional
structure each operation results in a tridiagonal
linear matrix equation which can be solved

operators (L—- successively.

very easily. This approach requires N times
more computing time than the paraxial
propagation. A similar approach has been

adopted by Hadley, in which the starting
polynomial was found by Pade approximants
from the recursion formula[2]. It is expected
that the of the wide angle
propagation can be increased by including the
higher order terms in the Taylor series
expansion of Helmholtz operator.

The accuracy and efficiency of the wide
angle propagation algorithm can be checked by
simulating the optical wave propagation
through the integrated waveguide tuming
mirrors as shown in Fig. 2. In this kind of
turning mirrors the optical wave around the
turning mirror is a mixture of the z-directed
wave and the wave propagating in the
direction angled by 6 relative to z-axis,
which can not be properly modeled using the

accuracy



paraxial wave propagation. In the calculation
the computational window size is 50 wm, the
number of mesh points 4096, the reference
refractive index n, 3.377, the wavelength 1.3
um, and the propagation step size 4z 0.05 um.
The length of the waveguide between two
mirrors is maintained to be 40 wpm for all the
of the
fransmitted wave with the eigenmode of the
output waveguide is calculated for various tilt
angles 6 which is 7 minus the turning angle.
The results are plotted in Fig. 3 for different
of polynomial in the expansion of
Helmholtz operator. The paraxial approximation
15°, and
the expansion upto second order can give
30°.
Obviously increasing the order of polynomial
can handle the
indicating upto 559 tilt angle can be handled
the sixth-order
polynomial, which is in good agreement with
the results shown in Fig. 1.

In summary, the formulation of the wide
angle propagation technique is presented and
demonstrated through the
of the integrated
waveguide turning mirrors of various turning
angles.

angles 4. The overlap intergral

orders

can handle the tilt angles upto about

accurate results for the tilt angles upto

wider angle propagation,

very accurately by using

the accuracy is

successful  simulation

References

1. Yevick D. and Glasner M.: 'Wide-Angle
Beam Propagation in Semiconductor Rib
Waveguides’, Opt. Lett, 1990, 15, pp. 174 -
176.

2. Hadley G. R. : A Muiltistep Method for
Wide Angle Beam Propagation’, Integrated
Photon. Res., Palm Springs, paper ITul5, 1993,
pp. 388 - 391

3. Chung Y. and Dagli N.: ‘A Wide Angle
Beam  Propagation Techniques using an
Explicit Finite

Difference Scheme’, IEEE Photon. Technol.
Lett.,, 1994, 6, pp. 540 - 542.

4. Wunsche A.. 'Transition from the paraxial

137

approximation to exact solution of the wave
equation and application to Gaussian beams’, J.
Opt. Soc. Am. A, 1992, 9, pp. 765 - 774.

0.04 N=2
002} N4
N=
5 000
LE N=
9
2 02t N=
Ay
2 I
= -004)
~ L
006+
008} N=1
NP L 1 — - 1 1 | G|
0 10 20 30 40 50 60 70 80 90
Angle(degree)

Fig. 1 The ralative phase error of the plane
wave as a function of propagation angle for
various orders of polynomials.

Etched Mirror

Fig. 2 An integrated waveguide turning mirror
structure. The width of the waveguide is 4 wm,
the core refractive index 3.38, and the clad
index 3.377. The length of the tilt waveguide
is 40 pm.
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Fig. 3 The amplitude transmission as a
function of the tilt angles for various orders of
polynomial for the Helmholtz operator
expansion.The amplitude transmission is
measured through the overlap integral between
the eigenmode and the optical field at the
output of the turning mirror structure shown
in Fig. 2.
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