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Abstract

In this paper, Plasma-Enhanced Chemical Vapor Deposition (PECVD) modeling using Polynomial Neural
Networks (PNN) has been introduced. The deposition of SO; was characterized via a 2°' fractional factorial
experiment, and data from this experiment was used to train PNNs using predicted squared error (PSE). The

optimal neural network structure and learning parameters were determined by means of a second fractional

factorial experiment. The optimized networks minimized both learning and prediction error. From these PNN

process models, the effect of deposition conditions on film properties has been studied.

The deposition

experiments were carried out in a Plasma Therm 700 series PECVD system. The models obtained will ultimately

be used for several other manufacturing applications, including recipe synthesis and process control.

1 . Introduction

Silicon dioxide films deposited by PECVD are useful
as interlayer dielectrics for metal-insulator structures
such as Mos integrated circuits and muitichip modules.
The PECVD of SOz in a SHd/NO gas mixture yields
flms with excellent physical properties. The film
properties are determined by the nature and
composition of the plasma, which in turn are controlled
by the deposition variables involved in the PECVD of
silicon oxide films. However, due to the complex nature
of particle dynamics within a plasma, it is difficult to
quantify the exact relationship between input factors
and critical output parameters. In the past few years,
several efforts have been aimed at determining such
relationships using statistical response surface models
[1l. Empirical process models derived from neural
networks have recently been shown to exhibit superior
performance in both accuracy and predictive capability.

This paper seeks to build upon this body of work,
and to obtain accurate and useful manufacturing
models for the PECVD process. In order to
characterize the PECVD of SO fims deposited under
varying conditions, we have performed a 2°" fractional
factorial experiment with three center-point replications
[6]. Data from these 19 experiments was used to

develop PNN process models describing seven output
response. The PNNs were trained using predicted
squared error.

The development of the optimal PNN model is
complicated by means of simple building blocks. These
include structural parameters such as the number of
hidden layer neurons. In this paper, PNN process
models for PECVD were first developed using default
parameter set. Afterwards, the effect of these factors
on PNN performance was also investigated via a
second fractional factorial experiment. The resuits were
analyzed. The optimal parameter sets that minimized
the training and prediction error of the PECVD models
were determined using the S0, PECVD experimental
data to examine the silicon dioxide film properties.

Il. Experimental Design and Methodology

The silicon dioxide fims were deposited in a
Plasma-Therm 700 series batch reactor using the feed
gases nitrous oxide, 2% silane in nitrogen. The
deposition conditions, as shown in Table | , were varied
in a 2°"' fractional factorial array. Approximately 5um
of SO, were deposited on 4-in diameter(100) oriented
silicon wafers. The PECVD system was operated at
13.56MHz, with an electrode spacing of 2.29cm. The



methodology for film characterization is described
below.

A Metricon 2010 prism coupler was used to
determine the thickness and index of refraction of films
on a silicon wafer, A Flexus F2320 was used to
measure the radius of curvature, which was used to
calculate the residual stress. A Perkin-Elmer 1600-FTIR
was used to obtain the infrared spectra, which were
used to measure the impurity content of the fiims. The
silanol and water concentrations of films were
determined from the infrared absorbance bands at 3650
and 3330cm ™' using the following formulas(1]

S = (179450 ~ 41Az0) (1)
W = (~14A3s0 — 894330 (2)

where S is the silanol weight percent, W is the water
weight percent, and A, is the optical density per micron
of film at a wave number of n. The wet etch rates in
a solution of 49% HF:HO (15 :
measured using a Dektak 3030 surface profilometer.
Parallel-plate capacitors were fabricated to evaluate the
film permittivity. A Keithley 590 CV analyzer and a HP
4275 LCR meter were used to measure the
capacitances and conductances. The permittivity was

1 by volume) were

then calculated from these measurements. Based on
these data, the PNN models were trained and tested.
The simulated process outputs were subsequently
analyzed.

<Table 1 Deposition Parameters>

Parameter Range
Substrate Temperature 200-400 °c
Pressure 0.25-1.8 torr
RF power 20-150 W
2% SHs in Ny flow 200-400 sccm
N2O flow 400-900 sccm

Il. PNN Process Modeling

The highly complex particle interactions with in a
plasma have limited the success of process modeling
from a fundamental physical standpoint{l]. Recently,
PNN's, as well as neural networks[1] have emerged
as a more attractive alternative to phyvsical models
and empirical statistical methods. The PNN's,
however, are still in the first stage of their research
on the semiconductor process modeling. The
inherent property of the PNN is to model complex
systems using simple building blocks. Namely, the

PNN possess the capability of learning (training)
arbitrary nonlinear mapping between noisy sets of
input and output patterns. The PNN learning is a
self- organizing process designed to determine an
appropriate set of Ivakhnenko polynomials[l] that
allow the activation of many simple parallel
processing units to achieve a desired state of
activation that mimics a given set of sampled
patterns. The PNN's learning(training) capability can
be attributed in part to the fact that its architecture
crudely resembles that of the human brain. These
nodes (called neurons) are interconnected in such a
way that the knowledge is stored in Ivakhnenko
coefficients. The activation level of a node is
determined by a nonlinear activation function with
optimal complexity, called a Ivakhnenko polynomial.
This function usually has a form such as;

y=A+ EBX+ 3 Zjlc,.,»X,Xﬁ
PHDHD I I S'S (3)

1

where X; X; and Xk is nodal input variables, and vy
is the output of an individual neuron (node). A, B;,
Cyj, and Dik are the coefficients of the Ivakhnenko
polynomial. This activation function endows the
PNN with the ability to generalize with an added
degree of freedom not available in statistical
regression techniques. The basic PNN configuration
is like Figure 1.
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<Figure 1. Basic PNN Configuration>

The PNN leads to self-organizing heuristic
hierarchical models of high degree with automatic
elimination of undesirable variable interactions. In
contrast with the conventional regression technique.
this scheme has several distinct advantages. a
smaller data set is required, the computational time
and resources are reduced and the final structure of



the PNN does not need to be specified. In addition,
high-order regression often leads to a severely
ill-conditioned system of equations. However, the
PNN avoids this by constantly eliminating variables
and interactions at each layer, and helps to reduce
linear dependence. Therefore, complex systems can
be modeled without specific knowledge of the
system or massive amounts of data.

Since the PNN

approximation (not interpolation), it is not well

algorithm is based on

proper for computer experiments, where exact values
of functions are known, but it tends to minimize the
average error and can eliminate outlier effects as

noise.

. 1 Structure of PNNs

The main concept of the PNN to be utilized for
data management purpose is based on the GMDH
that was first introduced by the Russian
Cybemneticist  Ivakhnenko, and was used to
synthesize the building blocks of modeling
methodology. This approximation technique, i.e.,
PNN, based on the perceptron principle with a
neural network-type architecture is used to model
the input-output relationship of a complex process
system.

At each layer, new generations of complex
equations are constructed from simple forms.
Survival of the fittest principle (appropriate
thresholds) determines the equations that are passed
on to the next layer and those that are discarded,
that is, only the best combination of input properties
(new variables) are allowed to pass through to the
next layer. The model obtained after each layer is
progressively more complex than the model at the
preceding layers. To avoid an overfit, the data
sample is divided into a) the training set, which is
used for the generation of several computing
alternative models and b) the testing set, which is
used to test the accuracy of the models generated
and for the selection of the best models at each
layer. This provides the self-organizing feature of
the algorithm, leading to models of optimal
complexity.

The number of lavers is increased until the newer
models begin to have poorer powers of predictability
than their predecessors. This indicates over-

specialization of the system. The final model is an
estimate of each performance function y in eqn.(3)
as a function of two or three variables, which are
themselves functions of two more variables, and so
on. The network result is a very sophisticated
model from a very limited data set.

In a PNN technique, a simple form function is
usually combined at each node of a polynomial
neural network to obtain a more complex form. This
function as an approximation represents the current
model for the given training and testing sets of
input-output data. This approximation is written as
a second degree regression equation like eqn.(4) in a
case of combining two inputs at each node.

y=A+BX;+CX;+DX}+EX!+FX X, @

where y is the output and Xi and X; are the two
inputs.

M. 2 Process of PNNs

The design of a variable control strategy requires
the availability of a reasonable accurate model of
the process system. Such models had not been
available for the semiconductor process model due to
the process dimensionality and the complexity of the
interacting physical phenomena. Till now, principle
models were almost impossible to develop in process
system. In this paper, the input-output data for
PECVD processes like the semiconductor system are
becoming available and open-up the possibility for
robust modeling tools that adopt a modeling
paradigm that is based on a PNN. The PNN is a
network transformation of R" -> R functions, as
shown in Figure 2.
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<Figure 2. PNN Function in Process Model>  <Figure 3. Stopping Criterion>

The nodes (neurons) are low-order polynomials of
a few inputs. The PNN synthesis problem may be
stated as follows. From a database of 1/O pairs, find
a structure (site and topology)and its parameters
(weight), so as to represent the database but also to



preserve generalization. The Predicted Squared Error
(PSE) is used as the performance metric. The PSE
is estimated from the mean squared error augmented
with a complexity penalty proportional to the error
variance of the output in the database. The PSE is
calculated for each node of the polynomial neural
network and only those nodes which satisfy a
threshold criterion are used as inputs to the next
layer generating new generations, thus pruning the
search and assisting to terminate the network
development in a finite number of layers. The best
output model, in terms of the PSE, was selected as
the final model for the semiconductor process
system.

The PNN synthesis activities have focused over
the past years on the development of self-
organizing, minimal polynomial networks with good
generation capabilities. We considered nine types of
model equations as shown in Table 2.

<Table 2. The node equations considered for polynomial

neural network synthesis>

Number of Inputs
1 2 3

linear bilinear

trilinear

—

Degree 2| quadratic | biquadratic | triquadratic

cubic bicubic tricubic

trilinear-wo+ w X+ Wa*Xo+ Wik X3
. . . 2 2 2
triquadratic=trilinear+w X * X+ WX 1% X3+ W X2k X3%X) +Wa* Xz +Wo*X3

Lo . . 3 3 3
tricubic-triquadratic + Wig* X1*Xe* X3+ W1 %X+ Wi2% X2 +W13*X3

From experimental work, it has been verified that
the curve of the smallest values saved has the
general shape shown in Figure 3. For the specific
curve shown in Figure 3, one would stop the
process after n iterations (generations), according to

the stopping criterion.

m. 3 PNN Optimization

A PNN structure may be effectively employved to
model the input-output behavior of the Si0. PECVD
experiment, l.e. to represent the relationship between
the input variables of the process and the yields as
the output quantities. Since there were five
controllable input parameters and seven measured
PECVD

experiment, the number of nodes (neurons) in the

output  characteristics in  this 50

input and output layers were set to ten and seven
(one per each output), respectively. In optimizing the
PNN models of PECVD process, the number of
hidden nodes (neurons) and layer are considered,
respectively. Initially, PNN PECVD models were
obtained using a set of input pairs (or single or
triplets) and default structures. Since these rough
models include all the polynomial-tvpe regression
functions (of first, second or third orders) of input
variables generated on the PNN structure, they were
then refined by varying the number of hidden nodes
(neurons) and layers according to a 2'-1 fractional
factorial design, analyzing all the PSE’s at each
layer, and choosing the polynomial values as close
as possible to the yields.

In varying the above factors, two important
characteristics of PNN process models have been
investigated, ie. learning (or training) ability and
prediction capability. In order to compare the PNN
with the Neural Networks[l], these performance
metrics are quantified in terms of their training (or
prediction) mean squared error (MSE), which is
given by,

MSE = N—l_l g‘o (yi—5)2  ®

where N is the number of trials, y; is the measured

value of each response, and Iili is the corres-
ponding PNN process model estimate. obtained from
the least square method. In evaluation learming
(training) error, N ranges over the number of
training trials used to build the model (in this case,
the 19 PECVD experiments). As for prediction error,
on the other hand, N represents some number of
testing trials apart from the original training set.
The prediction error in experiment was determined
using the trained PNN’s to predict the Si0: film
properties for eight other experiment runs that
occurred after the training experiment.

To search for PNN architecture and coefficients of
polynomial that minimized both the predicted
squared error of training set and the predicted
squared error of testing set, the following PSE as a
performance index was implemented at all laver of
PNN structure to rank and select the better model
structure for each of the seven output responses;

—237—



PSE = MSE + KP (6)

where MSE is the training mean squared error and
KP is the complexity penalty (overfit penalty) term.
The KP is defined by,

2K
N

KP = PF Sp? 7

where PF is the user defined penalty factor and is
set to 1 as the default value. N is the number of
training trials like eqn(5), sz is a prior estimate of
the true error variance that does not depend on the
particular model being considered. K denotes the
total number of coefficients in the model that are
estimated so as to minimize MSE. The complexity
penalty term allows the designer to accommodate
the computational complexity in the calculation of
the error term.. This term disallows addition of
layers or nodes for small improvements in the
predicted output.

The PSE takes into account the complexity of the
PECVD system, while, at the same time, it attempts
to reduce the predicted squared error. Initially, the
MSE had a significant effect, but as the model
increases in the size of training trials, the KP term
becomes more important. Therefore the PSE is
optimized in the point of compromise of hoth the KP
and the MSE. As The values of PSE are to
determine the PNN architecture that simultaneously
minimizes both training and prediction errors.

In performing this analysis, it has been assumed
that the optimal polynomials fitted by linear
regression equations were sufficient to capture the
dependence of PNN performance on the optimal
coefficients. The fitted final polynomials were
subsequently used to generate a PNN that optimized
the training and prediction errors. The optimal PNN
models for the Si0: PECVD system were determined
using least square method, in order to find input
nodes from the satisfied node, after iteratively
calculating the PSE until the PSE was smaller than
the prescribed quantity. Hence the presence of both
MSE and KP ensures that PSE favors simple
models with low error.

As summarized above, the training and prediction
mean squared errors for each of the seven PECVD

process models are shown in Table 3.

<Table 3. Error comparison between BPN and PNN>
Pecvd Model Train Train Predict Predict
Response [Method | error _improve ; error __improve.

Ref. | BPN 4.69e-3 3262% '1.99e-2 60.85%

Index | PNN [316e-3. 7793
Permitti- | BPN 10613 49.76% 0.586 36.52%
vity _ _PNN 0308 0372
Wet { BPN 12674 4862% 5783 93.60%
etch rate . PNN 1374 30
. Stress BPN 846 58.75% 683 83.75%
. _UPNN 39 o
Deposi- ;| BPN 888 45.61% 1113 85.76%
tion rai(;%PNN 483 1585
H:O BPN 132 4167% 3.06 46.419%
. UPNN_ 077 164
SSOH BPN 137 37.96% 4.72 63.77%
) ~_PNN 08 171 ) B
Average - 4500% 67.24%

IV. Conclusions

The properties of PECVD silicon dioxide films
have been modeled using the PNNs. The PECVD
process was characterized by varying five controli-
able parameters in a fractional factorial design. The
PNNs were trained and later optimized to predict
seven-key PECVD output responses. Overall, the
PNN process modeling method is extremely useful
and readily applicable to the empirical modeling of
such complex plasma processes.

Finally, the PNN model based on a limited data
set, predicted well the Si02 PECVD process yields,
Then, an enhanced database is bound to improve
the predictive capabilities of the SO, PECVD model.

These results were very encouraging.
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