EXTENSION OF FUZZY LIE SUBALGEBRAS AND FUZZY LIE IDEALS ON U(L)

CHUNG GOOK KIM AND HEE SIK KIM

ABSTRACT. In this note we will discuss extension of fuzzy Lie subalgebra and fuzzy Lie ideals of a Lie algebra L on universal enveloping algebra U(L) of L and will study some relations among them.

1. Introduction

Definition 1. ([H]) A vector space L over a field F with an operation $[\]$: $L \times L \longrightarrow L$ called the *bracket* of x and y is called a *Lie algebra* over F if the following axioms are satisfied:

- (L1) The bracket operation is bilinear,
- (L2) [xx] = 0, for all $x \in L$,
- (L3) [x[yz]] + [y[zx]] + [z[xy]] = 0, for all $x, y, z \in L$.

Axiom (L3) is called the Jacobi identity.

A subspace K of L is called a Lie subalgebra of L if $[xy] \in K$ for all $x, y \in K$ and a subspace I of L is called a Lie ideal of L if for all $x \in I$, $y \in L$ implies $[xy] \in I$.

Definition 2. ([K]) A fuzzy set μ of L is called a fuzzy Lie subalgebra of L if for all $\alpha \in F$, $x, y \in L$, the following are satisfied:

- (i) $\mu(x + y) \ge \min(\mu(x), \mu(y)),$
- (ii) $\mu(\alpha x) \ge \mu(x)$,
- (iii) $\mu([xy]) \ge \min(\mu(x), \mu(y)).$

We call μ a fuzzy Lie ideal of L if the condition (iii) is replaced by $\mu([xy]) \ge \max(\mu(x), \mu(y))$.

Definition 3. ([L]) Let R is a ring. A fuzzy set γ of R is called a fuzzy subring of R if for all $x, y \in L$ the following are satisfied:

- (i) $\gamma(x-y) \ge \min(\gamma(x), \gamma(y)),$
- (ii) $\gamma(xy) \ge \min(\gamma(x), \gamma(y))$.

We call γ a fuzzy ideal of R if (ii) is replaced by $\gamma(xy) \geq \max(\gamma(x), \gamma(y))$.

Definition 4. ([H]) A universal enveloping algebra of L is a pair (U, i) where U is an associative algebra with 1 over $F, i : L \longrightarrow U$ is a linear map satisfying, for all $x, y \in L$

$$i([xy]) = i(x)i(y) - i(y)i(x) \cdots (*)$$

and the following holds; for any associative F-algebra U with 1 and any linear map $j:L\longrightarrow U$ satisfying (*), there exists a unique homomorphism of an algebra $\phi:U\longrightarrow U$ (sending 1 to 1) such that $\phi\circ i=j$. We denote it by U(L).

Lemma 5. ([K]) A fuzzy set μ of L is a fuzzy Lie subalgebra [resp. fuzzy Lie ideals] of L if and only if the level subsets $\mu_t = \{x \in L : \mu(x) \geq t\}$, for $0 \leq t \leq \mu(0)$, are Lie subalgebras [resp. Lie ideals] of L.

Lemma 6. I is an ideal of U(L) if and only if $I \cap L$ is a Lie ideal of L.

Proof. (\Rightarrow) For all $x \in I \cap L$ and $y \in L$, since I is an ideal of U(L), $xy - yx = [xy] \in I$. Hence $I \cap L$ is a Lie ideal of L.

 (\Leftarrow) For all $x, y \in I$, since $I \cap L$ is a Lie ideal of L, $[xy] = xy - yx \in I \cap L$. Hence $xy \in I$ and $yx \in I$. This means that I is a ideal of U(L).

Proposion 7. If a fuzzy set σ is a fuzzy subring [resp. fuzzy ideal] of U(L), then $\sigma|_L$ is a fuzzy Lie subalgebra [resp. Lie ideal] of L.

Proof. For all $x, y \in L$, $\alpha \in F$, we prove that the following:

- (i) $\sigma|_L(x+y) = \sigma(x+y) \ge \min(\sigma(x), \sigma(y)) = \min(\sigma|_L(x), \sigma|_L(y)).$
- (ii) $\sigma|_L(\alpha x) = \sigma(\alpha x) \ge \sigma(x) = \sigma|_L(x)$.

(iii)

$$\sigma|_{L}([xy]) = \sigma([xy]) = \sigma(xy - yx)$$

$$\geq \min(\sigma(xy), \sigma(yx))$$

$$\geq \min(\min(\sigma(x), \sigma(y)))$$

$$\geq \min(\sigma(x), \sigma(y))$$

$$= \min(\sigma|_{L}(x), \sigma|_{L}(y)),$$

and respectively,

$$\sigma|_{L}([xy]) = \sigma([xy]) = \sigma(xy - yx)$$

$$\geq \min(\sigma(xy), \sigma(yx))$$

$$\geq \min(\max(\sigma(x), \sigma(y)))$$

$$\geq \max(\sigma(x), \sigma(y))$$

$$= \max(\sigma|_{L}(x), \sigma|_{L}(y)).$$

$$-102 -$$

Proposion 8. Let σ be a fuzzy subring [resp. fuzzy ideal] of U(L). Level subsets σ_t , $0 \le t \le \sigma(0)$, are a subring [resp. ideal] of U(L) if and only if level subsets $\sigma_t \cap L$, $0 \le t \le \sigma(0)$, are Lie subalgebras [resp. Lie ideals] of L.

Proof. By Lemma 5 and 6.

Remark. Let σ be a fuzzy subring [resp. fuzzy ideal] of U(L) and μ be a fuzzy Lie subalgebra [resp. fuzzy Lie ideal] of L, respectively. Then we have the questions: whether the following equation holds or not?,

$$\mu_t = (\sigma|L)_t \cap L$$

Another question is when the above equation holds?

We can easely see that if the converse of Proposion 7 holds, then the above equations hold. Now, it is not known that the converse of Proposion 7 holds.

REFERENCES

- [H] J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York, (1972).
- [K] C. G. Kim, Fuzzy Lie subalgebras and fuzzy Lie ideals, Ph. D. Thesis, Chungnam National University, Korea (1996).
- [L] W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy sets and systems 8 (1982), 133-139.

Chung Gook Kim Department of Mathematics Chungnam National University Taejon 305-764, Korea

Hee Sik Kim
Department of Mathematics Education
Chungbuk National University
Cheongju 360-763, Korea