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In this paper, we introduce four types of compactness(i.e.W-compact, M~-compact, P-compact,
Q-compact) in a fuzzy topological space. It is shown that all of these notions of compactness are
good extenions and allow Tychonoff theorems. Moreover we obtain relationships among these notions.

1. Neighborhoods and Convergences

Let X be a nonempty set, [ X be the set of all functions from X to I.

Definition 1.1. Let (X, 8) be a fuzzy topological space. A fuzzy set A € I¥ is said to be a fuzzy
W-neighborhood of an ordinary point x€X if there exists p&€d with p<A and

e{x) = A(x) > 0. The collection of all W-neighborhoods of an fuzzy point in a fuzzy topology is
denoted by NW(x) .

Definition 1.2. Let ( X, ) be a fuzzy topological space. A fuzzy set A & I”* is said to be a fuzzy
M-neighborhood of x; if there is some open F-set g in X such that x; € ¢ and ¢ < A, The

collection of all M-neighborhoods of an fuzzy point x; in a fuzzy topology & is denoted by

NM(XA) .

Definition 1.3. Let %, be an F-point in X and (X, &) an fts. A fuzzy set A € I* is said to
be an fuzzy P-neighborhood of x; if there is some open fuzzy set g in X such that A { u(x) and

¢ < A, The collection of all P-neighborhoods of an fuzzy point x; in a fuzzy topology & is

denoted by Np(x,l).



Definition 14. Let x; be an F-point in X and (X, 8) an fts. A fuzzy set A € I% is said to
be an fuzzy Q-neighborhood of x; if there is some open fuzzy set in X such that x; { # and
¢ < A ,The collection of all Q-neighborhoods of an fuzzy point x; in a fuzzy topology & is

denoted by Np(x,l).
Remarks. A Q-neighborhood of a fuzzy point generally does not contain the point itself.

It is shown [3] that a fuzzy filter F in X is a fuzzy ultra filter if and only if F has the following

property : If g & I*is such that #/\ 0+ 0 for each o= F , then g€ F .

Lemma 15. Let X be a set of points, |l the family of all ultrafilters on X, and |l p the family

of all fuzzy ultra prefilters. We define two maps :

f: - Ug by FA) = {pel”™ | supp () € A for all Aell),
and
giL‘p"’U by g(B) = {supplp) | pEF forall}”EUp}.

Then f and g are well defined.

2. Compactness

Definition 2.1. An fts. X is said to be fuzzy ultra W-compact (briefly f.u.W. compact) if every

ultra prefilter on X is W-convergent with respect to a ordinary point x € X. See [5]

Definition 2.2. An fts. X is said to be fuzzy ultra M-compact (briefly fuM. compact) if every ultra
prefilter on X is M-convergent with respect to fuzzy point X, .

Definition 2.3. An fts. X is said to be fuzzy ultra P-compact (briefly fuP. compact) if every

ultra-prefilter on X is P-convergent with respect to fuzzy point X;.

Definition 2.4. An fts. X is said to be fuzzy ultra Q-compact (briefly fu.Q. compact) if every ultra

prefilter on X is Q-convergent with respect to fuzzy point X,



Given a topology T on X, the corresponding fuzzy topology @(J )(see [12]) is the family of all
fuzzy sets gin X which are lower semicontinuous on (X, 7): (X, w(TF)) is C(X, I,), the set

of all continuous functions from (X, T ) to I,, the unit interval I equipped with the right topolgy

7, ={(a,11lac1} UL}

Theorem 2.5. Let (X, T) be a topological space on X . Then
(1) (X, 7) is compact if and only if (X, w(T)) is an fuW. compact.
2 (X, J) is compact if and only if (X, w(T)) is an f.uM. compact.
3) (X, T) is compact if and only if (X, w(T)) is an fuP. compact.
(@) (X, T) is compact if and only if (X, w(T)) is an fu.Q. compact.

Recall the definition of fuzzy continuous(briefly F-continuous) and equivalent relations [4]

Theorem 2.6. Let (X, 7) and (X, p) are topological spaces and let f: (X, TJ) — (Y, p) be
a function. If f is F-continuous then the following are satified :

(1) ¥ X is fuW. compact, then Y is fuW. compact.

(2) If X is fuM. compact, then Y is fuM. compact.

(3) If X is fuP. compact, then Y is fuP. compact.

(4) If X is fuQ. compact, then Y is fuQ. compact.

Theorem 27. Let (X ) jey be a family of nonempty fuzzy topological spaces and let
X = ]._J{ jesX, with the product fuzzy topology T . Then following are satisfied :

(1) X is FUW. compact if and only if each X; is F.U.W. compact.

(2) X is F.UM. compact if and only if each X, is F.UM. compact.

(3) X is F.UP. compact if and only if each X, is F.U.P. compact.

(4) X is FU.Q. compact if and only if each X; is F.U.Q. compact.

Putting together the foregoing arguments this shows that we have the following :

f.u. W

e !
fuM — f.uP & f u Q



Theorem. Let (X, T ) be an f.t.s. Then
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() If (X, T ) is an fuW-compact, then it is an f.uM-compact.
(2) ¥ (X, ) is an fuM-compact, then it is an f.u.P-compact.
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