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Abstract. We introduce fuzzy ordered filter, fuzzy weakly implicative
ordered filter and fuzzy implicative ordered filter of implicative commutative

semigroups and prove and some results.

1. Introduction.

Chan and shuml1] were investigated the notion of an ordered filter of
implicative semigroups and various properties. Jie Meng{10] proved that
implicative commutative semigroups are equivalent to BCK-algebras with
condition(s). In this paper, using the notion of negatively partially ordered
implicative semigroups, we prove that a fuzzy implicative ordered filter of

implicative semigroup is a fuzzy ordered filter.

2. Preliminaries.

Definition2.1 An algebraic system < X, <,-, *,1 > where < is a binary

relation on X, - and * are binary operation (that is constant element) is



called a negatively partially ordered implicative semigroup, if it satisfies the
following:

(1) < X, <> is a partially ordered set

(2) < X,- > is a semigroup

B)z<yimpliesr-2<y-zand z-r<z-yforall xyzeX

4)z-y<zandz-y<yforallx,yec X

(B)z<zxyiff z-x<yforallz,y,z€X

From now on a negatively partially ordered implicative semigroup is
simply called an implicative semigroup.

Definition2.2 An implicative semigroup < X;<,-, *,1 > is said to be
commutative, if it satisfies z-y =y -z forall z,y € X. That is < X,- > is a

commutative semigroup.

Proposition2.3 Let < X,<,-,%,1 > be an implicative sémigroup, then
for z,y, 2z € X we have

6)z*xz=1

(MNz=1x*zx

@) z<yx(z-y)

9 z<yimpliesc*xz>y*xzand z*xx < zx*y

(10)z <1

(I)z<yifandonlyifz*xy=1

(12) x*x(y*x2)=(z-y)*2

(13) if < X, - > is commutative, then zxy < (2 -x) * (2 - y)



Theorem 2.4 Suppose that < X, <,- %,1 > is an implicative commuta-
tive semigroup. Then the following hold; for all z,y, 2 in X

(14) z*(y*x2z) =y * (T *2)

(15) y* ((y*xx)*x) =1

(16) (y*z) * ((zxz) * (yx 2)) = 1

(A7) (y*z)x ((zxy) * (z* 2)) = 1

Definition 2.5 Let < X ,<,-,*,1 > be an implicative semigroup, F is a
nonempty subset of X. F is called an ordered filter of X, if for any %,y € X,

(F1) = -y € F whenever x,y € F that is, F is a subsemigroup of X,

(F3) z € Fand x <y imply y € F.

Theorem 2.6 Let < X,<,-,%,1 > be an implicative semigroup F a
nonempty subset of X. Then F is an ordered filter of X if and only if it
satisfies

(a)leF

(b)forallz,y€ X, z+*y € Fand z € F imply y € F.

3. Fuzzy ordered filter

Throughout this paper, X denotes an implicative commutative semi-

group.
Definition 3.1 A function u: X — [0, 1] is called a fuzzy ordered filter

of X, if for any x,y € X, we have

a) p(1) = p(z)



b) u(y) = p(@ *y) A p(z)

Theorem 3.2 A fuzzy subset u of X is a fuzzy ordered filter of X if and
only if for every t € [0,1], ur = {z|z € X, pu(x) > t} is ordered filter of X,
when u; #£ 0

Theorem 3.3 If a fuzzy subset u is an arbitrary fuzzy ordered filter for
any z,y € X

(18) If z <y then u(z) < p(y)

(19) p(z *y) = p(z xy) A p(z x )

(20) If z < y * z then u(2) > p(z) A p(y)

(1) p(z* (zxy)) = p(z* (z+y)) Aplzx z)

Definition 3.4 A function p : X — [0,1] is called a fuzzy weakly
implicative ordered filter of X, if for any z,y € X, p(z* (2 *y)) > u(z = (x *
y) Az * z)

Theorem 3.5 A fuzzy subset y of X is a fuzzy weakly implicative ordered
filter of X if and only if u is a fuzzy ordered filter.

Definition 3.6 A function u: X — [0,1] is called a fuzzy implicative
ordered filter of X, if for any z,y € X, u(z*y) > pu(z* (x *y)) A p(z *x x).

Definition 3.7 If the equality (22) (z * ) * (2 xy) = z * (z * y) holds,
then it is called a positive implicative.

Theorem 3.8 A fuzzy implicative ordered filter u of X is a fuzzy ordered

filter.



Theorem 3.9 If X is positive implicative, then a fuzzy ordered filter is

a fuzzy implicative ordered filter.

References

(1] M.W. Chan and K.P. Shum, Homomorphisms of Implicative
Semigroup, Semigroup Forum Vol.46, 7-15 (1993).

[2] E.Y. Deeba, Filter theory of BCK-algebras, Math.Japon.25,
631-639 (1980).

[3] C.S. Hoo, Fuzzy ideals of BCI and MV-algebras, Fuzzy Sets

and system62, 111-114 (1994).

[4] C.S. Hoo, BCl-algebras with condition(s), Math.Japon.32,

749-756 (1987).

(5] C.S. Hoo, Filters and ideals in BCI-algebras, Math.Japon.36,
987-997 (1991).

(6] Xi Ougen, Fuzzy BCK-Algebra, Math.Japon.36, 935-942 (1991).

[7] K. Iseki and S. Tanaka, Ideal theory of BCK-algebras, Math.
Japon.22, 351-366 (1976).

[8] K. Iseki and S. Tanaka, An introduction to the theory of
BCK-algebra, Math.Japon.23, 1-26 (1978).

[9] Jie Meng, On ideals of BCK-algebras, Math.Japon.34, 143—154(1994).
[10] Jie Meng, Implicative Commutative Semigroups are Equivalent to
a Class of BCK Algebras, Semigroup Forum Vol. 50, 89-96 (1995).



