PAIRWISE FUZZY S-CLOSED BITOPOLOGICAL SPACES

JIN HAN PARK

DEPARTMENT OF APPLIED MATHEMATICS, PUKYONG NATIONAL UNIVERSITY, DAEYEON-DONG NAM-KU, PUSAN 608-737, KOREA

BU YOUNG LEE, MI JUNG SON

DEPARTMENT OF MATHEMATICS, DONG-A UNIVERSITY, HADAN-DONG SAHA-KU, PUSAN 604-714, KOREA

Abstract: In this paper, we generalize the concept of fuzzy S-closed spaces due to Mukherjee and Ghosh [8] into fuzzy bitopological setting and investigate some of its properties using the concepts of (τ_i, τ_j) -semi-closure and related notions in fuzzy setting.

1. Introduction and preliminaries

Using the concept of fuzzy set, Chang [2] first introduced fuzzy topological spaces. Subsequently many authors [1,8,10-12] continued the investigation of such spaces. Kandil [5] introduced and studied the notion of fuzzy bitopological spaces as a natural generalization of fuzzy topological spaces. Kumar [6,7] defined the concepts of (τ_i, τ_j) -fuzzy semi-open (semi-closed) sets and (τ_i, τ_j) -fuzzy preopen (preclosed) set in the fuzzy bitopological setting.

In this paper, we generalize the concept of fuzzy S-closed spaces due to Mukherjee and Ghosh [8] into fuzzy bitopological setting and discuss some of its properties by using the concepts of (τ_i, τ_j) -semi-closure and related notions in fuzzy setting, and characterize pairwise fuzzy S-closed sets in terms of the concept of fuzzy filterbase. Also the image and inverse image of pairwise fuzzy S-closed spaces under some types of functions are investigated.

For definitions and results not explained in this paper, we refer to the papers [6,7,9,12] assuming them to be well known. A system (X,τ_1,τ_2) consisting of a set X with two fuzzy topologies τ_1 and τ_2 on X is called a fuzzy bitopological space (henceforth, fbts for short) [5]. For a fuzzy set A of a fbts (X,τ_1,τ_2) , τ_i -Int(A) and τ_j -Cl(A) means respectively the interior and closure of A with respect to the fuzzy topologies τ_i and τ_j . With τ_i -fo set and τ_j -fc set we shall mean respectively τ_i -fuzzy open set and τ_j -fuzzy closed set. Throughout this paper, the indices i and j take values in $\{1,2\}$ and $i \neq j$.

Definition 1.1 [6,7,9]. Let A be a fuzzy set in a fbts (X, τ_1, τ_2) . Then A is called

- (a) (τ_i, τ_j) -fuzzy semi-open (briefly. (τ_i, τ_j) -fso) if there exists a τ_i -fo set B such that $B \leq A \leq \tau_j$ -Cl(B),
- (b) (τ_i, τ_j) -fuzzy semi-closed (briefly, (τ_i, τ_j) -fsc) if there exists a τ_i -fc set B such that τ_j -Int $(B) \le A \le B$,
 - (c) (τ_i, τ_j) -fuzzy preopen (briefly, (τ_i, τ_j) -fpo) if $A \leq \tau_i$ -Int $(\tau_j$ -Cl(A)),
 - (d) (τ_i, τ_j) -fuzzy preclosed (briefly, (τ_i, τ_j) -fpc) if τ_i -Cl $(\tau_j$ -Int(A)) $\leq A$,
 - (e) (τ_i, τ_i) -fuzzy regularly open (briefly, (τ_i, τ_i) -fro) if $A = \tau_i$ -Int $(\tau_i$ -Cl(A)),
 - (f) (τ_i, τ_j) -fuzzy regularly closed (briefly, (τ_i, τ_j) -frc) if $A = \tau_i$ -Cl $(\tau_j$ -Int(A)).

Theorem 1.2 [9]. For a fuzzy set A in a fbts (X, τ_1, τ_2) , the following are equivalent:

- (a) A is (τ_i, τ_j) -fso,
- (b) $A \leq \tau_i Cl(\tau_i Int(A)),$
- (c) τ_j -Cl(A) = τ_j -Cl(τ_i -Int (A)).

Theorem 1.3. Let A be a fuzzy set in a fbts (X, τ_1, τ_2) . Then $x_{\alpha} \in (\tau_i, \tau_j)$ -sCl(A) if and only if for each (τ_i, τ_j) -fso set U with $x_{\alpha}qU$, UqA.

Theorem 1.4. If a fuzzy set A in a fbts (X, τ_1, τ_2) is (τ_i, τ_i) -frc, then A is (τ_i, τ_i) -fso.

Theorem 1.5. If a fuzzy set A in fbts (X, τ_1, τ_2) is (τ_i, τ_i) -fso, then τ_i -Cl(A) is (τ_i, τ_i) -frc.

2. PAIRWISE FUZZY S-CLOSED BITOPOLOGICAL SPACES

Definition 2.1. Let $\mathcal{F} = \{F_{\alpha}\}$ be a ffb in (X, τ_1, τ_2) and x_{α} be a fuzzy point in X. Then \mathcal{F} is said to

- (a) (τ_i, τ_j) -S-accumulate to x_α if for each (τ_i, τ_j) -fso semi-q-nbd U of x_α and each $F_\alpha \in \mathcal{F}$, τ_j -Cl(U)q F_α ,
- (b) (τ_i, τ_j) -S-converge to x_α if for each (τ_i, τ_j) -fso semi-q-nbd U of x_α , there exists $F_\alpha \in \mathcal{F}$ such that $F_\alpha \leq \tau_j$ -Cl(U).

Definition 2.2. A fbts (X, τ_1, τ_2) is called (τ_i, τ_j) -fuzzy S-closed if for each fuzzy cover $\{V_{\alpha} \mid \alpha \in \Lambda\}$ of X with (τ_i, τ_j) -fso sets, there exists a finite subfamily $\{V_{\lambda_k} \mid k = 1, 2, \cdots, n\}$ such that $\bigcup_{k=1}^n \tau_j - \operatorname{Cl}(V_{\lambda_k}) = 1_X$. X is called pairwise fuzzy S-closed if it is (τ_1, τ_2) -fuzzy S-closed and (τ_2, τ_1) -fuzzy S-closed.

Theorem 2.3. Let \mathcal{F} be an ultra-fuzzy filter in a fbts X. Then \mathcal{F} (τ_i, τ_j) -S-accumulates to a fuzzy point x_{α} if and only if \mathcal{F} is (τ_i, τ_j) -S-convergent to x_{α} .

Theorem 2.4. The following statements are equivalent for a fbts (X, τ_1, τ_2) :

- (a) X is (τ_i, τ_i) -fuzzy S-closed.
- (b) Every ultra ffb \mathcal{F} is (τ_i, τ_i) -S-convergent.
- (c) Every ffb $\mathcal{B}(\tau_i, \tau_i)$ -S-accumulates to some fuzzy point in X.
- (d) For each family $\{F_{\lambda}\}$ of (τ_i, τ_j) -fsc sets such that $\cap F_{\lambda} = 0_X$, there exists a finite subfamily $\{F_{\lambda_1}, F_{\lambda_2}, \cdots, F_{\lambda_n}\}$ of $\{F_{\lambda}\}$ such that $\cap_{k=1}^n \tau_j$ -Int $(F_{\lambda_k}) = 0_X$.

Definition 2.5. A collection \mathcal{U} of fuzzy sets in a fbts (X, τ_1, τ_2) is said to be a cover of a fuzzy set A if for each $x \in \text{Supp}(A)$, $(\cup \mathcal{U})(x) = 1$. If each member of \mathcal{U} is (τ_i, τ_j) -fso, then \mathcal{U} is called a (τ_i, τ_j) -fuzzy semiopen cover.

Definition 2.6. A fuzzy set A in a fbts (X, τ_1, τ_2) is said to be (τ_i, τ_j) -fuzzy S-closed set (for shortly, (τ_i, τ_j) -FSC set) in X if for every (τ_i, τ_j) -fuzzy semiopen cover of A, there exists a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $\cup \{\tau_j\text{-Cl}(\mathcal{U}) \mid \mathcal{U} \in \mathcal{U}_0\} \geq A$. A fuzzy set A in a fbts (X, τ_1, τ_2) is pairwise fuzzy S-closed set (for shortly, pairwise FSC set) if it is (τ_1, τ_2) -FSC set and (τ_2, τ_1) -FSC set.

Theorem 2.7. For a fuzzy set A in a fbts (X, τ_1, τ_2) , the following statements are equivalent:

- (a) A is (τ_i, τ_i) -FSC set in X.
- (b) For each cover \mathcal{U} of A by (τ_j, τ_i) -frc sets, there exists a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $(\cup \mathcal{U}_0)(x) = 1$ for all $x \in Supp(A)$.
- (c) If \mathcal{U} is a family of (τ_j, τ_i) -fro sets having the property that for every finite subcollection \mathcal{U}_0 of \mathcal{U} , $(\cap \mathcal{U}_0)(x) > 1 A(x)$ for some $x \in Supp(A)$, then $\cap \mathcal{U} \neq 0_X$.
- (d) For any ffb \mathcal{B} in X by (τ_j, τ_i) -fro sets with $(\cap \mathcal{B}) \cap A = 0_X$, there exists a finite subcollection \mathcal{B}_0 of \mathcal{B} such that $(\cap \mathcal{B}_0)\bar{q}A$.

Theorem 2.8. Let A be a fuzzy set in X. If for each ffb \mathcal{B} in X by (τ_j, τ_i) -fso sets, $[\cap \{(\tau_i, \tau_j)\text{-s}Cl(\mathcal{B}) \mid \mathcal{B} \in \mathcal{B}\}] \cap A = 0_X$ implies there exists a finite subset \mathcal{B}_0 of \mathcal{B} such that $\cap \mathcal{B}_0 \bar{q}A$, then A is a (τ_i, τ_j) -FSC set in X.

Theorem 2.9. A fuzzy set A in a fbts (X, τ_1, τ_2) is (τ_i, τ_j) -FSC set if and only if whenever any fbb \mathcal{B} in X has the property that for any finitely many members B_1, B_2, \dots, B_n of \mathcal{B} and for any (τ_j, τ_i) -frc set C with $C \geq A$, $(B_1 \cap B_2 \cap \dots \cap B_n)qC$ holds, then there exists a fuzzy point $x_\alpha \in A$ such that $x_\alpha \in \cap \{(\tau_i, \tau_j)\text{-sCl}(B) \mid B \in \mathcal{B}\}$.

Theorem 2.10. If A and B are (τ_i, τ_j) -FSC sets in a fbts (X, τ_1, τ_2) , then $A \cup B$ is also (τ_i, τ_j) -FSC set.

Theorem 2.11. If A is (τ_i, τ_j) -FSC sets in a fbts (X, τ_1, τ_2) , then τ_j -Cl(A) is also (τ_i, τ_j) -FSC set.

Theorem 2.12. If A is (τ_j, τ_i) -fro set in a (τ_i, τ_j) -fuzzy S-closed fbts (X, τ_1, τ_2) , then A is a (τ_i, τ_j) -FSC set.

Lemma 2.13 [9]. A fuzzy set A in a fbts (X, τ_1, τ_2) is (τ_j, τ_i) -fpo if and only if (τ_i, τ_j) -sCl(A) is (τ_i, τ_i) -fro.

Theorem 2.14. If A is (τ_j, τ_i) -fpo set in a (τ_i, τ_j) -fuzzy S-closed fbts (X, τ_1, τ_2) , then (τ_i, τ_j) -sCl(A) is a (τ_i, τ_j) -FSC set.

3. FUZZY PAIRWISE SEMI-CONTINUOUS, FUZZY PAIRWISE IRRESOLUTE FUNCTIONS AND FUZZY S-CLOSEDNESS

Definition 3.1. Let $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ be a function. Then f is called a

- (a) fuzzy pairwise semi-continuous [7] if $f^{-1}(V)$ is (τ_i, τ_j) -fso set of X for each σ_i -fo set V of Y,
- (b) fuzzy pairwise irresolute if $f^{-1}(V)$ is (τ_i, τ_i) -fso set of X for each (σ_i, σ_i) -fso set V of Y.

Clearly, every fuzzy pairwise irresolute function is fuzzy pairwise semi-continuous, but the converse need not true. This converse is true if the function is, in addition, fuzzy pairwise open [7].

Lemma 3.2 [7]. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is fuzzy pairwise semi-continuous if and only if for each fuzzy set A of X, $f((\tau_i,\tau_j)\text{-s}Cl(A))\leq \sigma_i\text{-}Cl(f(A))$.

Theorem 3.3. If $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is fuzzy pairwise semi-continuous surjection and (X,τ_1,τ_2) is pairwise fuzzy S-closed, then (Y,σ_1,σ_2) is pairwise fuzzy almost compact.

Lemma 3.4. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is fuzzy pairwise irresolute if and only if for each fuzzy set A of X, $f((\tau_i,\tau_j)\text{-sCl}(A))\leq (\sigma_i,\sigma_j)\text{-sCl}(f(A))$.

Theorem 3.5. Let (X, τ_1, τ_2) be PFED [9] and $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be fuzzy pairwise irresolute function. If A is a pairwise FSC set in X, then f(A) is a pairwise FSC set in Y.

If the set A of above theorem is the whole set X, then we can drop the condition that (X, τ_1, τ_2) is PFED.

Theorem 3.6. If $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is fuzzy pairwise irresolute surjection and (X,τ_1,τ_2) is pairwise fuzzy S-closed, then (Y,σ_1,σ_2) is also pairwise fuzzy S-closed.

Theorem 3.7. Let $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ be fuzzy pairwise semi-continuous and $f:(X,\tau_2)\to (Y,\sigma_2)$ is fuzzy continuous and fuzzy open. If A is (τ_1,τ_2) -FSC set in X, then f(A) is (σ_1,σ_2) -FSC set in Y.

Corollary 3.8. Let $(X_1, \tau_1^1, \tau_2^1)$ and $(X_2, \tau_1^2, \tau_2^2)$ be fibts's such that X_1 is product related to X_2 [1]. If the product fibts $(X_1 \times X_2, \sigma_1, \sigma_2)$ is pairwise fuzzy S-closed, where σ_k is the fuzzy product topology [11] generated by τ_k^1 and τ_k^2 (k = 1, 2), then each $(X_i, \tau_1^i, \tau_2^i)$ (i = 1, 2) is also pairwise fuzzy S-closed.

REFERENCES

- [1]. K. K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82(1981) 14-32.
- [2]. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190.
- [3]. N. R. Das and D. C. Baishya, Fuzzy bitopological space and separation axioms, J. Fuzzy Math. 2 (1994) 389-396.
- [4]. N. R. Das and D. C. Baishya, On fuzzy open maps, closed maps and fuzzy continuous maps in a fuzzy bitopological spaces, (Communicated).
- [5]. A. Kandil, Biproximaties and fuzzy bitopological spaces, Simon Stevin 63 (1989) 45-66.
- [6]. S. S. Kumar, On fuzzy pairwise α -continuity and fuzzy pairwise pre-continuity, Fuzzy Sets and Systems 62 (1994) 231-238.
- [7]. S. S. Kumar, Semi-open sets, semi-continuity and semi-open mappings in fuzzy bitopological spaces, Fuzzy Sets and Systems 64 (1994) 421-426.
- [8]. M. K. Mukherjee and B. Chosh, On fuzzy S-closed spaces and FSC sets, Bull. Malaysian Math. Soc. 12 (1989) 1-14
- [9]. J. H. Park and B. Y. Lee, Fuzzy pairwise extremally disconnected spaces, submitted.
- [10]. P. M. Pu and Y. M. Liu, Fuzzy topology I. Neighborhood structure of fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980) 571-599.
- [11]. C. K. Wong, Fuzzy topology: Product and quotient theorems, J. Math. Anal. Appl. 45 (1974) 512-521.
- [12]. H. T. Yalvac, Fuzzy sets and functions on fuzzy spaces, J. Math. Anal. Appl. 126 (1987) 409-423.