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Abstract: We investigate some of algebraic properties of T-generalized state ma-
chines, T-generalized transformation semigroups, coverings of T-generalized state ma-

chines and T-generalized transformation semigroups.
1. Introduction

Since Wee [6] in 1967 introduced the concept of fuzzy automata following Zadeh [7],
fuzzy automata theory has been developed by many researchers. Recently Malik et al. [2-
4] introduced the concepts of fuzzy state machines and fuzzy transformation semigroups
based on Wee’s concept of fuzzy automata and related concepts and applied algebraic
technique. In this paper, we introduce the concepts of T-generalized state machines and
T-generalized transformation semigroups that are different from their concepts, cover-
ings of T-generalized state machines and T-generalized transformation semigroups that
are generalizations of crisp concepts in algebraic actomata theory and investigate their
algebraic structures.

For the terminology in (crisp) algebraic automata theory, we refer to [1].

2. T-generalized state machines



DEFINITION 2.1. A triple M = (Q,X,r) where @ and X are finite nonempty sets
and T is a fuzzy subset of Q X X x Q, i.e., T is a function from QxX xQtof0,1], is
called a generalized state machine if quq 7(p,a,q) < 1forallp € Q anda € X. If
quQ 1(p,a,q) =1 for allp € Q and a € X, then M is said to be complete.

DEFINITON 2.2 [5]. A binary operation T on [0, 1] is called a t-norm if
(1) T(a,1) = q,
(2) T(a,b) < T(a,c) whenever b < c,
(3) T(a,b) = T(b,a),
(4) T(a,T(b,c)) = T(T(a,b),c)
for all a,b,c € [0,1].

By an abuse of notation we will denote T(a;, T(az, T(- - - ,T(an-1,a2)- - ))) by T(ay, -

where aq,--- ,a, € [0,1]. The legitimacy of this abuse is ensured by the associativity of

T (Definition 2.2(4}).

Let M = (Q, X, 7) be a generalized state machine. Then @ is called the set of states
and X is called the set of input symbols. Let X+ denote the set of all words of elements
of X of finite length.

DEFINITION 2.3. Let M = (Q,X,7) be a generalized state machine. Define 1+ :
Q@xX* xQ— [0,1] by

7-+(p7 ay - Qn, q)

=V {T(r(p,a1,m1),7(r1,02,72),"* ;T(Tn-2,8r-1,Tn-1), T(Tn_1,an, @))Ir: € Q}

where p,q € Q and a1, -- ,a, € X. When T is applied to M as above, M is called a

T-generalized state machine.

Hereafter a generalized state machine will always be written as a T-generalized state
machine because a generalized state machine always induces a T-generalized state ma-
chine as in Definition 2.3.

For a T-generalized state machine, = is a relation on X* defined bt = = y if r+(p, x,q) =

+(p,y,q) for all p,q € Q.
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Given a T-generalized state machine M = (@, X, 1), we will write {y € X |z = y}
by [z] where z € Xt and Xt/ = = {[z]|z € X} by S(M).

THEOREM 2.4. Let M =(Q, X, 7) be a T-generalized state machine. Then S(M) is
a semigroup, where the binary operation on S(M) is defined by [z][y] = [zy].

3. T-generalized transformation semigroups
We now generalize the concept of a transformation semigroup.

DEFINITION 3.1. A T-generalized state machine (@, S, p) is called a T-generalized
transformation semigroup if S is a finite semigroup and if it satisfies the following:

(1) p(p,uv,q) = V{T(p(p,u,r),p(r,v,q))|r € Q} for all p,q € Q and u,v € S.

(2) For u,v € S, if p(p,u,q) = p(p,v,q) for all p,q € Q, then u = v.

When a T-generalized transformation semigroup S = (@, S, p) is regarded as a T-
generalized state machine (@, S,7,) by taking 7, = 7} = p, we will write it by SM(S).

DEFINITION 3.2. A T-generalized transformation semigroup (Q, S, p) is called a T-
generalized transformation monoid if S is a monoid with identity e and it satisfies the

following:
1 ifp=gq

p(p,e,q)={0 ip4aq

A T-generalized transformation monoid (@, S, p) is called a T-generalized transforma-

tion group if S is a group.

DEFINITION 3.3. A t-norm T is said to be T-generalized transformation seimgroup
inducible if S(M) is finite and quQ H(p,x,q) <1forallpe€ Q and x € X for every
T-generalized state machine M = (Q, X, 7).

Actually, let T be T-generalized transformation semigroup inducible, then a T-generalized
state machine M = (@, X, 7) naturally induces a T-generalized transformation semigroup

(Q, S(M), p-), where p, is defined by p-(p, [z}],q) = 7 (p, z,¢) by Theorem 2.4. We call



(Q, S(M), pr) by the T-generalized transformation semigroup induced by M and denote
it by T'S(M).

PROPOSITION 3.4. There exists a T-generalized transformation semigroup inducible

t-norm T.

From now on, we always assume that T is T-generalized transformation semigroup
inducible whenever we deal with T-generalized transformation semigroups induced by

T-generalized state machines.

4. Coverings

DEFINITION 4.1. Let M; = (@Q1,X1,71) and My = (Q2,X2,72) be T-generalized
state machines. If £ : X1 — X3 is a function and i : @2 — @y Is a surjective partial
function such that 1 (n(p), z,n(q)) < 75 (p,&(x),q) for all p,q in the domain of 5 and
z € X, then we say that (n,¢) is a covering of M, by M, and that M, covers M; and
denote by M; < M,. Moreover, if the inequality turns out equality whenever the left
hand side of the inequality is not zero [resp. the inequality always turns out equality],
then we say that (n,£) is a strong covering [resp. a complete covering] of My by M,
and that My strongly covers [resp. completely covers] M, and denote by M; <, M,
[resp. My <. Ma].

In Definition 4.1, we abused the function {. We will write the natural semigroup
homomorphism from X; to X} induced by ¢ by ¢ also for convenience sake. We give

an example that is elementary and important.

EXAMPLE 4.2. Let M = (Q,X,7) be a T-generalized state machine. Define an
equivalence relation ~ on X by a ~ b if and only if r(p,a,q) = 7(p, b,q) for all p,q € Q.
Construct a T-generalized state machine M, = (Q, X/ ~,7"~) by defining 7™(p, [a],q) =
7(p,a,q). Now define £ : X — X/ ~ by &(a) = [d] and n = 1g. Then (n,£) is a

complete covering of M by M, clearly.



DEFINITION 4.3. Let & = (@1, 51, 1) and 83 = (Q2, S2, p2) be T-generalized trans-
formation semigroups. If n : Q2 — @) is a surjective partial function and for each
s € 5 there exists t, € Sy such that pi1(n(p),s,n(q)) < p2(p,ts,q) for all p,q in the
domain of n, then we say that 1 is a covering of 8 by 82 and that S; covers S; and
denote by 8 < 8. Moerover, if the inequality turns out equality whenver the left hand
side of the inequality is not zero [resp. the inequality always turns out equality], then
we say that 5 is a strong covering [resp. a complete covering] of 81 by S; and that S,

strongly covers [resp. completely covers] 81 and denote by §; <, Sz [resp. &1 <. Sa].

THEOREM 4.4. Let My = (G, X1,71) and My = (Q2, X3, 72) be T-generalized state
machines such that M; < M, with covering (n,€). Then TS(M;) < TS(M3). More-
over, if My <. M, and 7 is a function, then TS(M,) <. TS(Ma).

References

[1] W.M.L. Holcombe, Algebraic automata theory, (Cambridge University Press, 1982).

[2] D.S. Malik, J.N. Mordeson and M.K. Sen, On subsystems of a fuzzy finite state ma-
chine, Fuzzy Sets and Systems 68 (1994) 83-92.

[3] D.S. Malik, J.N. Mordeson and M.K. Sen, Semigroups of fuzzy finite state machines,
in: P.P. Wang, ed., Advances in Fuzzy Theory and Technology, Vol. II, (1994) 87-98.

[4] D.S. Malik, J.N. Mordeson and M.K. Sen, Submachines of fuzzy finite state machines,
J. Fuzzy Math. 4 (1994) 781-792.

[5] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960) 313-
334.

[6] W.G. Wee, On generalizations of adaptive algorithm and application of the fuzzy sets
concept to pattern classification, Ph.D. Thesis, Purdue Univ., 1967.

[7] L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338-353.



