## [III~6]

## Growth Kinetics of Ni adsorbates on Si(111)

Se-Jong Kahng, Jared D. Lera, Yung Doug Suh, and Young Kuk

Department of Physics, Seoul National University, Seoul 151-742 Korea

Growth of Ni adsorbate on Si(111)-7×7 surface was studied as a function of Ni coverage and annealing temperature using scanning tunneling microscope. Ni atoms adsorb as clusters near step edges, and remain disordered both after annealing at ~800K and ~1300K at submonolayer coverages. The disordered cluster island shows triangular shaped domain boundaries on the  $7\times7$  surface. The island grows with 3 fold symmetry with increasing Ni coverage until the  $7\times7$  surface disappears. After high temperature annealing, Ni/Si(111)- $\sqrt{19}\times\sqrt{19}$  R 23.4° (abbreviated  $\sqrt{19}$ ) structure can be observed under the cluster island. Phase boundaries between  $7\times7$  and Ni induced  $\sqrt{19}$  structure are clearly observed. Dislocations which separate two  $\sqrt{19}$  structures are often observed and the growth model is proposed from the structure. As increasing Ni coverage, further, the disordered clusters on the  $\sqrt{19}$  structure disappear unexpectedly. Based on this observation a model for the growth kinetics is proposed.