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ABSTRACT

This paper presents a 'mixed’ method for performing the
sensitivity analysis for multibody dynamics. The mixed method
uses both the analytical derivation and the numerical evaluation,
in which premitive derivations rely on the analytical process and
their associated individual terms are evaluated by the numerical
process. Therefore, this method can eliminate difficulty in
derivation of the direct differentiation. Furthermore, by using
the joint coordinate formulation for the equations of motion,

computational efficiency and numerical accuracy are achieved.
1 INTRODUCTION

High speed digital computers allows engineers to simulate
the dynamics of a mechanical system under different input
conditions and to modify its design prior to actual production.
Ultimately, this capability allows the engineer to pursue the
optimal design of mechanical systems. Before the era of com-
puter analysis. a manufacturer had to construct and test a series
of prototypes, which was not only time-consuming but also
costly.

Optimal design of multibody systems is performed based on
iterative process of dynamic analysis and senstivity analysis.
When large scale multibody systems, such as ground vehicles,
are considered to be optimized. a large amount of computation
time is required. Furthermore, if the sensitivity analysis is purely
bused on explicit analytical derivations, developing a sensitivity
analysis software for ground vehicles also becomes a major pain.
Because of this difficulty, general purpose of optimal design
analysis code is not avalable in sensitivity analysis of multibody
systems. Therefore, simplicity in programming and computa-
tional speed are critical issues in performing a sensitivity anal-
ysis.

For the sensitivity analysis, researchers have mostly used

one of the following three methods: the adjoint variable method,

the direct differentiation method. and the finite difference
method. Advantages and drawbacks of each method have been
reported over the years.

This paper covers a method for performing sensitivity
analysis refered as a 'mixed’ method. The mixed method
combines some processes of the two existing sensitivity analysis
methods (direct differentiation method and finite difference
method) in order to overcome the shortcomings in each of the

existing methods.
2 EQUATIONS OF MOTION

The equations of motion for a multibody system can be
described in terms of different sets of coordinates. One of the
most effective coordinate system is the joint coordinate system.
In the joint coordinate system, a vector of velocities for body i
is defined as v, which contains a 3-vector of translational
velocities F; and a 3-vector of angular velocities w,. A vector of
accelerations for this body is denoted by ¥;, which contains ¥,
and w,. For a multibody system containing b bodies, the vector
of coordinates q, velocities v, and accelerations v, contain the

elements of q,, v, and V. respectively, fori = 1,---, b.

The relative configurations of two adjacent bodies can be
defined by one or more joint coordinates which are equal in
number to the number of relative degrees of freedom between
these bodies. For amultibody system with open-loops, the vector
of joint coordinates is denoted by 6 containing all of the joint
coordinates and the absolute coordinates of a base body if the
base body is not the ground. Therefore, the vector 8 has k ele-
ments, equal to the number for degrees of freedom of the system.
The vector of joint velocities is defined as §. It can be shown
that there is a linear transformation between 8 and v as [4]

v=B8§ (N
where B is a nxk matrix. The generalized equations of motion
for an open-loop multibody system, when the number of selected

coordinates is equal to the number of degrees of freedom, can

-378-



be written as

M6 =f )
where

M=B'MB

f=B(g—MB6)

3 COST SENSITIVITY ANALYSIS

A general dynamic response optimization problem is defined
as a process to minimize a cost function y which is based on
the equations of motion of a given system. The cost function
can be written as a function of system state variables and a set
of design parameters as

Y = y(b,6b:r),0(b;r),6(b; 1)) (3)
where 6, 8, and 8 are vectors of joint coordinates, velocities, and
accelerations, respectively. The design parameter vector b is
assumed to have r elements which may be bounded as
bl <b,<b', where b/ and b arc the lower and upper bounds

of the ith design parameter.

In certain applications. the cost function may be subjected
to some constraints. The constraints can also be expressed in
the general form of Eq. (3) as function of 0, 8, 6. b. and 1.
Therefore, the term "cost function y" refers to both the cost
function and the constraints. Furthermore, this study is not
concerned with any particular optimization algorithm but is

concentrated on methods for evaluating the cost sensitivity.

The cost sensitivity associated with the ith design parameter
is described as the rate of a variation of the cost y due to the

variation of the associated design parameter as

dy Y(b, +Ab) — y(b;)

b, =, Ab, @)

By using analytical expression, this can be written as

_ Y v, v, Oy,
Yo = 3 aee 36 %350 )

. oy rI\V
whereg % ® and — can be easily obtained through symbolic

operation, because \p is generally defined as a simple function
of 8,6,8, and b in most applications. Since the sensitivity of
vectors 8, and 8, are obtained by numerically intergration 8, and
6,. the focus in the sensi

tivity analysis is on methods for evaluating 9,
4 MIXED METHOD

This method uses the sensitivity equations from the formu-
lation of the direct differentiation method, however. the indi-
vidual terms in the sensitivity equations are obtained by the finite

difference method. The method can then reduce the analytical

difficulty encountered in the direct differentiation method and
can utilize the numerical efficiency in the direct differentiation

method.

The joint coordinate formulation produces a minimal num-
ber of equations of motion. By using this Coordinate system, the
size of the senstivity equation can also be reduced. This mixed
method. here. uses the joint coordinate formulaton. For an
open-loop system, the residual of equations of motion Eq. (21

can be defined as
I'=B’(MB8-g+MBO)=0 (6)
By differentiating Eq. (6) with the ith design parameter, it can
be written as
or oo 5] . .

B'MB6, = 3 3% +350, =1, +1,6, +T,0, (7

In the mixed method, the terms I'y and [y are computed by

using the finite difference method. The term I, is obtaincd
numerically or analytically depending on a chosen design
parameter. When the terms 'y and I', are numerically evaluated
each of the state vectors § and § are individually perturbed
Hence. the number of evaluations of T is the same as the tot
element number of the state vectors 8 and 8. This elemen:
number of the state vectors is dependent on the degrees
freedom of the given system. The matrices Iy and T, ar
evaluated once, they are used in deriving the sensitivity vector-

associated to other design parameters.

In this method, the integrations of the state sensitivity and
the nominal state are completely separated. Thus, in the com-
putation of the state of the norminal system need not use the same
integration algorithm or the same time step used in the statc
sensitivity computation. For the case of a crude sensitivity
analysis, the computation time can be reduced by using a large
time step in the same integration routine or a relatively crude
integration algorithm in the integration of the state sensitivity
matrices. Furthermore, once the coefficient matrix in the
equations of motion is evaluated. the same matrix can be used
in each sensitivity equations corresponding to other design

parameters.

4.1 Formulation of I',

The elements in matrix T’y consist of the column vectors T, '~

corresponding to the ith element of the selected joint coordinates
6. From Eq. (7), each column vector I‘6 is written as

ar

T
86 89 —[B'(g - MB6) - B'MB#] (8)

rb =
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where 6 and @ are independent from the variation of 8. The

Lo . . .
operation 55 is performed by using numerical perturbation.

The value of T for the nominal system is zero and for the
perturbed system it is the same as the residual of the equations
of motion. Hence, the numerical calculation of operation ;~; can
be performed by using perturbed 8. The term Iy can be written
as

*

I . . .
Fe/:E:BT(g -MB'6)-B"MB'§ 9)
where superscript * is a term corresponding to the perturbed
. =6, +A6,. The column vector Iy fills the ith column of the

matrix I

4.2 Formulation of T,

The numerical calculation of this term is performed by using
the perturbed 6. Note that the term 6 only appears in g and B
of T'. Therefore, the calculation of T’y is concerned with the terms

that are a function of 8. These terms can be expressed as
c=g-MB§ (10)

It can be obtained directly from the calculation of the nominal
system. From the same way of obtaining Eq.(9), the term T,

can be written as

¢-c¢ g -g-M®B6 -BY)
AB, A6,

ru‘: (1D

4.3 Formulation of T,

The most commonly considered design parameters in the
design process of multibody systems are inertial properties,
spring and damper locations and characteristics, and the loca-
tions of the kinematic joint. The inertial properties simply appear
as linear factors in the mass matrix M and the force vector g (not
in the velocity transformation matrix B). The partial derivatives

of f can be written as

or (0]

0lg.-B

a’T:Bnr) J :(r)e—er)é (12)
' -1

where the subscripts i and (r) are the ith body and its translational
coordinates, respectively, and B, is the corresponding row
block submatrix of the velocity transformation matrix B. The
gravitational constant g, is applied when the given system is in
the gravitational field.

Spring and damper coefficients. and their attachment posi-
tion vectors with respect to a body-fixed coordinate system. are

embedded in vector g in Eq. (6). Then. the partial derivatives of
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" with respect to those design parumeters can be written as

[1]
ar 5
5 = BLBI | (=T, (13)
"
L5
17
ar . 8|
56”:[3,,1;}/1 U (14)
_§r
-
or rary,| 5|92 -
a._ %8 5
5 = BLB 155+ 5 | as)
.__g_ 0
where
) og' AR
g =K~ ", %:—K”‘il[] _l_f]+l—’uuuj A, (16)
i i)

The subscript / and j are the two connected bodies by the spring
and the damper. The terms ! and /, are the total length and the
undeformed length of the spring or the damper, and u is the
direction of the spring or the damper. The prime ( °) stands for
a vector in a body fixed coordinate system (En().

The position vectors with respect to a body-fixed coordinate
system is implicitly embedded in matrices B and B. Since, an
analytical derivation of the term T, can be complicated, the

term I',  will be evaluated by numerical perturbation as

] -

9, | Als); Als), Als),

4.4 Numerical Example

In order to demonstrate the feasibility of this method, cost
sensitivity results of a simple mechanical system are compared
against those obtained from the finite difference method in terms

of accuracy and also computational efficiency.
The example system is a quarter car with a double A-arm

suspension system shown in Figure 1. For the sake of conve-
nience in the simulation process, the chassis is constrained to
have motion in the z-direction. Hence, this system has four
degrees of freedom. The tire is mounted on the ground subject
to a sine wave given by z, = A sin(27tf,1). In this model. the sine
wave is assigned with an amplitude A = 0.02 m and a frequency
f.=3Hz.

The selected cost function of this system is described as

\,;:f’f?dz (19)

where # is the z-directional acceleration of the chassis. The

considered design parameters are masses of body 1 and 3. the

stiffness and the damping coefficient of the suspension. the radial



stiffness of the tire, and the attachment point of the link of joint
5. Hence, the design parameter vector is described as
b” = [m,,my, K,D,C.,s"]. The unperturbed design parameters
are given as { 200.0, 5.0. 40.0x10°, 10.0x10%, 1.5x10%, 0.0 ].

A =(00.-0.395,020)
A 8=(00-0427-0120)

1j. My=200Kg
1 (0.0.0.295.-0.115

S

RN
&4 L0 (Cutjoint)
M =05Kg —
1=0272m

Selected design parameters
[MiIM;KDCs; ]

Figure 1 Schematic diagram of a quarter car model.

The simulation of this example uses the Multi-Body System
Simulation computer package (MBOSS) [13]. This is a general
purpose computer program for the dynamic analysis of multi-
body systems which uses the joint coordinate formulation of
equations of motion and comprehensive anlytical model for a
tire and its interaction with the ground [14-15]. This mixed
method for the sensitivity analysis is incorporated with this

program.

The cost sensitivity can be obtained analytically from Eq.
(19) as

1
v, = f 27z, dt 20)
0

where ¢ is obtained from solving equations of motion and 2, is
obtained from solving the sensitivity equations. In this method,
the Gear integration algorithm is used to solve the nominal
system and the Euler integration algorithm is used to solve the

state sensitivity and the cost sensitivity.

Table | shows the sensitivity results from the finite differ-
ence method and the mixed method. It can be seen that the
sensitivity results from the mixed method are in good agreement
with those from the finite difference method. The CPU times
with six design parameters and with single design parameter in

Sun sparc 10 are 40 sec and 35 sec. respectively.

Table 1. Comparison of results of the mixed method ar:.:
the finite difference method (F.D.M.).

Mixed Method F.D. M.

dy . .
o -8.06x 107 -7.40x10™
n,

d s

aw 4.32x10° 4.72x10"
1

3K -4.14x10 -4.45x10
Yy ,x )
s 55 4x10°
3D 1.55x10 1.54x10
ﬂl_ 1.0 - -5
aC -1.00x10 -1.09x10
N 23.47 351
os?

5 CONCLUSION

One example of the sensi

tivity analysis is a quarter car with a double A-arm suspens
system. The sensitivity analysis is performed using the m,
method. The results are checked through the finite differc
method. In this example. overall deviation of the sensitiv
results of the two methods is less than 10 percenr. The v
putation time of the mixed method is largely dependent on
degrees of freedom of the given system. but it is slighs
dependent on the mumber of design parameters as observe:d -
the result. The total computational time is 40 sec which is 1
atively small compared to the type of problem. It can be cu:
cluded that the mixed method based on joint coordin:
formulation can not only reduce computational time but !
numerical errors. Hence this method has some advantage in t!
optimal design problem such as a complex and large number -

parameter optimization.
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