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Three key genetic loci required for proper progression of leaf senescence were identified in Arabidopsis thaliana.
Mutations in these loci cause delay in all senescence symptoms exarnined, including both anabolic and catabolic
activities, during natural senescence and upon artificial senescence induced by various senescence-inducing
treatments. The result provides a decisive evidence that leaf senescence is a genetically programmed phenomenon
controlled by several monogenic loci in Arabidopsis. The result further indicates that leaf senescence caused by
various senescence signals occurs, at least in part, through comunon pathways in Arabidopsis and that the three

genetic loci function at the common steps.

Leal devclopment ends with senescence consisting
of deteriorative events that lead to cell death (1).
During leafl senescence, the cells experience dramatic
changes in metabolism and cellular structure. The
most visible one is the color change in autumn
leaves and in the leaves of monocarpic plants, which
5 due to preferential breakdown of chlorophyll and
synthesis of the other pigments. This phenomenon
occurs concomitantly with chloroplast degradation (1,
2) and with attenuated snabolic activities such as
photosynthesis and protein synthesis (1). Instead,
calabolism such ag nucleic acid breakdown and
proteolysis becomes active through induction of a
number of hydrolytic enzymes (1, 3). Leaf
senescence, although a deteriorative cellular process in
its nature, is assumed to be an evolutionarily
acquired, active genetic trait thal makes an
important contribution to fitness of plants, [or
example by remobilizing nutrient from vegetative
tissues to veproductive organs (1). Elucidating the
genetic mechanism of leaf senescence should be
essential for the understanding of the senescence
phenomenon 1tself and also for practical purposes
such as the improvement of plant productivity, pre-

or post-harvest storage, stress tolerance, etc.
However, in spite of the biological and practical
importance of leal senescence, the genetic mechanism
controlling the leaf senescence process remains poatly
understood. We, therefore, undertook a systematic
genetic screening for identification of the genes (hat
contro] leaf senescence, using Arabidopsis thaliana as
a model system. Arabidopsis, as a representative
monocarpic plant, displays a relatively reproducible
leaf senescence pattemn (4, 5) along with its shorl
life span and is readily amenable to genetic analysis.

Mutant plants with delayed leaf senescence were
screened from seed pools mutagenized by
ethylmethanesulfonate (EMS) (6) or by T-DNA
insertion (7, 8, 9). Initial screening was carried out
by visual evaluation of the degree of leafl yellowing
caused by chlorophyll loss either during natural in
planta senescence (i planta screening) or during
incubation of detached leaves in darkness (dark
screening). The latter scheme has been widely
adopted in studies of leal senescence (1, 3) and was
employed here 1o accelerale leaf senescence in a
more consistent manner. From the dark screening,
we have olated four mutants from approximately
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25000 M2 plants. These mutant lines were named
anyl, 7, 3 and Il respectively: any stands for
Arabidopsis pon-yellowing. From the in planta
screening, we have identified one mutant from
approximately 9,000 M2 plants. This mutant line
was named anyd.

Although chlorophyll loss and the concomitant
yellowing of leaves are convenient and distinctive
indications of leaf senescence, these phenotypes can
be uncoupled from “unctional” leal senescence (3).

For example, the naturally occurring “stay green”
varieties of a few crop planis show delay in
chlorophyll loss but not in loss of anabolic activities
(10). To evaluate the degree of functional senescence
in the mutant lines we have isolated, we examined
the integrity of photosystem (PS) II as well as the
chlorophyll contents. The integrity of PS5 II was
tested by measuring the photochemical efficiency of
PS II, a sensitive and effective parameter of
functional Jeaf senescence (11, 12, 13). A preliminary
assessment showed that loss of chlorophyll contents
was delayed in all the mutant lines. Loss of the
photochemical efficiency was delayed in the anyl, 2
3 and 9 mutant lines, but not in the anyll line
(data not shown). The result indicated thai the
delayed yellowing phenotype of the anyll mutant
was likely due to a lesion in chlorophyll metabolism
rather than due to delay in functional senescence.
The anyll mutant line was not studied any further.

Examination of the genetic behavior of the 4
mutant lines, anyl, 2 3, and 9 is summarized in
Table 1. The delayed yellowing phenotype in all of
the mutant lines was inherited as monogenic
recessive Mendelian genetic traits. The genetic
complementation test (Table 1) revealed that the
mutant lines fell into 3 complementation groups. We
designated the gemes for the 3 monogenic
complementation groups as ANYI, ANY3 and
ANY3Y respectively (see below for genetic mapping).
The phenotypes of anyl, any3, and any9 mutant
plants (14) are shown in Figure 1.

The senescence behavior of the mutant plants was
then egamined in further detail during natural in

Table 1. Genetic analysis of the mutations. The
phenotypes of the progenies were scored visually for the
delayed yellowing phenotype during both natural and
dark —induced senescence in each plant. In all the
progenies examined, the two phenotypes cosegregated. The
# value is for an expected ratio of 3:1 (wild type:delayed
senescence),

Phenotype 2
+ — x

Cross Type Total

anyl/anyl x ANYI/ANY! FL 0 % 0

F2 42 319 N3 039 (p0s)
anyZ/any? X ANYZ/ANY2 FL & 89 0

F2 270 177 530470 (pod)
anyVany3 ¥ ANYJ/ANY? Fl 2 2 0

F2 10 % 2 0010 (p09)
anyVamd x ANYWANYS FL % 5 0 -7

F2ol% 142 M 0630 (D)

any2/any? X any3/any3 n % 0 5
anyl/anyl X any3/any3 N N 7 0
anyl/anyl X any%any9 A A 0
anv¥/any3 X any%/any9 Fl % 5 0
ein?/ein? x EINZ/EINZ Fl 42 42 0
P 21 013 (py03)
any¥anyd X cin/ein? B 0 32
any?/any? X cinl/ein’ Fl X 0 29

2+, wild type: -, delayed senescence.

planta senescence and artificial senescence induced by
darkness. The data in Figure 2 clearly show that, in
all of the three mutant plants, both of the
chlorophyll contents (Figure 2A) and the
photochemical efficiency (Figure 2B) are retained at
much higher levels during natural and dark-induced
senescence. The retention of cellular functions during
senescence in the mutant leaves was further
demonstrated by examining the relative amount of
the large subunit of ribulose bisphosphate carboxylase
oxygenase (Rubisco) complex as an indication of
photosynthetic activity in leaf tissue. As shown in
Figure 2D, relatively higher amounts of the protein
are retained in the mutants than in wild type plants
during both natural and artificial senescence. The
results indicated that functional senescence was
delayed in the 3 mutant lines.

While the senescence parameters examined above
indicated that the mutants are delayed in their loss
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Figure 1. (A-D) Phenotypes of a whole plant and a representative fourth foliar leal of wild type (A) and any! (B), any3

(C), and any9 (D) mutants at 50 days afler germination (DAG). The plants were grown in 16 hour light/8 hour dark
cycle at 23°C in a growth chamber. Neither the age of the leaves, as measured from the time of leaf emergence, nor the
time of (lowering was significantly different enough between the wild type and mutant plants to account for the apparent
phenotypic difference i leaf senescence (15). (E-F) Phenotype of a fourth foliar leaf of wild type (E) and anyl (F), any3
{G), or any9 (H) mutanl upon induction of senescence by incubation in darkness. The leaves at a same age (21 DAG [or
wild type, any3 and any9: 22 DAG for anyl) was detached and incubated on 3 mM 2-N-morpholincethanesulfonic acid

buffer {MES, pH 58) for 4 days in darkness.

of components [or anabolic (photosynthetic)
activities, leaf senescence is known also to involve
the activation of catabolic (or hydrolytic) activities
for degradation of cellular constituents. For exarnpie,
senescence-associated RNase activity was found in a
number of plant species and is thought to be
involved In the remobilization of phosphate to
nonsenescing organs (16, 17). We examined RNase
activily, as a representative catabolic activity, in the
mulant planis during leal senescence. The results in
Figure 2C show that the total cellular RNase
activity, examined under neutral pH (16), increased

to a lesser extent in the mutant plants than that in
the wild type leaf during both natural and dark-
induced senescence.

Leaf senescence also involves the disintegration of
cellular ultrastructure in addition to metabolic
changes. The disinlegration of chloroplast
ultrastructure in particular is one of the earliest
symptom of leaf senescence (3). We have examined
the chloroplast ultrastructure of the mutant and wild
type leaves upon dark-induced senescence. As shown
in Figure 3, the mutants retained substantially more
of the granar structure than did the wild type. In
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Figwe 2. Txamination of sencscence parameters in the delayed scnescence mutants. Chlerophyll content (A), photochemical efficiency (B), total cellular RNase
aciivily (D) and the relative amount of the large subunit of Rubisco complex () were examined at several developmental stages (left) or at the given times
alier ingubating detached Jeaves in darkness (right), using the third and fourth foliar leaves of wild type (Cal-0), anyl, any3 and any plants. The sampling
tme was chosen i relation to (he timing of fowering and the advancement of servscence in wild type plants (12). The Teaves of wild type anyd and any¥
were zssayed al the indicated times. The leaves of any] were assayed 1 day later than those of the others, to equalize the age of the leaves (15). The dark-
induced senescence cxperiments wore performed with the leaves at 21 DAG (wild type, any3 and any) ar at 2 DAG for anyl. Shown is the rolative value
&5 pormentage or fold of the mitial peint vlue for each expenment. The vertical bars denote standard deviations. Chlorophyll contents per fresh weight of leal
tissue were dotormined from mdividual leaves as described {4, 5 12). The data were collected from £ leaves for each cxperiment. The pholochemical efficiency
(Fv/Frn, 11) was determined &rom 12 leaves for each experiment. Total RNase actinty assayed by mezsuring the release of acid-soluble matenal from yeast
tRNA (16) under newtral pH was obtained from 6 individual leaves for cach expenment. The relative amount of the large qubunit of the Rubisco complex
(arrow) in total soluble cellular protein was cxamined by SDS-polyacrylamide gel electrophoresis and then by staining the gel with Cocmassie brilliant, blue.
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Figure 3. Transmission electron
micrograph of chloroplast ultrastruc-
ture, The fourlh foliar leaf at 21
DAG (A, wild type: C, any3 and
D, any9) or 2 DAG (B: anyl) was
incubated in darkness for § days and
prepared for transmission electron
micrography. The electron dense
particles indicated by arrows are
plastoglobuli.

Table 2. Sencscence responses of the mutants 1o treatment
with senescence-hastening plant hormones. The
photochernical efficiency (11) was measured with the
detached fourth foliar leaves incubated in darkness in the
presence or absence of each hormone (19). The data
presented are expressed as percentages relative to each
control experiment without hormone treatment. The values
in parenthesis are standard deviations.

ARA Ethylene MedJA
Col-0) 503 (96) 524 (7.2) 536 (6.6)
anyl 971 (29) 33 (20) Bl (6h)
any3 933 (39) 977 (1.8) 92 &0)
anyd 87.1 (7.0) ®b4 (1.7) D08 (24)

addition, the number of plastoglobuli, an indication
of chloroplast membrane disintegration (2), is also
lower in the mutant leaves than in wild type leaves.

The fact that the mutations identified here delay
a broad spectrum of senescence symptoms including
both anabolic and catabolic activities suggests that
the genes defined by these mutations are most likely
the key regulatory genetic components mvolved in
the progression of functional leaf senescence. The
result reported here, ihus, presenis a clear genetic
evidence that functional leaf senescence in
Arabidopsis is a genetically controlled event involving

several monogenic genelic elements,

TLeaf senescence is regulated by several endogenous
factors, such as developmental age and plant
hormones (1), as well as by exogenous factors.
Fspecially three plant hormones, ethylene, abscisic
acid (ABA) and methyl jasmonate (MedA) are
known to strongly hasten leaf senescence (1). We
have examined a senescence response of the mutants
to these hormones. The results in Table 2 show that
the senescence response of the mutant leaves to all
three hormones is highly reduced, when compared to
that of wild type leaves.

The fact that the mulants display delayed
senescence In response to several senescence-inducing
signals (developmental age, dark, ABA, ethylene and
MeJA) suggests that leal senescence caused by these
factors may proceed, at least in part, through
common pathways in Arabidopsis. The results
further suggest that the genetic loci we have
identified here function in the common pathways. It
should be noted that senescence is only delayed in
these mutations, but it ultimately does occur. This
could be explained if the mutations are weak alleles
of the genes or alternatively if senescence proceeds
through several parallel pathways. Accepting the
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notion that senescence is important for [itness of
plants, remobilizing nutrients (rom senescing tissue to
young or reproductive organs, the strategy of having
genetically redundant pathways would be
advantageous for plants to promote the fidelity of
the senescence process (20).

A plant hormone can affect a wide variety of
plant processes, including senescence (21, 22, 23). The
reduced senescence response of the mutants to the
three plant hormones prompted us to examine if the
mutations we identified are alleles of known plant
hormone mutations. We found that the anyl and
any9 mutations have normal response to the three
hormones in seedling development (24, data not
shown), separating them from the known mutations
in these hotmonal pathways. Furlhermore, the
chromosomal mapping data (25) showed that the
two genes are located at positions away from that of
any of the known mutations in the three hormonal
pathways. These results suggest that we have
identified two new genetic loci involved in leaf
senescence. Seedlings with the any3 mulation showed
normal response to ABA or MelJA, but insensitivity
treatment (24). The
complementation test (Table 1) showed that any3
8 in fact, allelic to the einZ-] mutation (26), an
cthylene-insensitive mutation. While it has been
stated that some of the mutations in the ethylene
signal pathway affect leaf senescence (26, 27, 28),
only the etr! mutation was analyzed in detail to
show that the mutation causes delay in several

1o ethylene genetic

senescence-related symptoms (28). Our results show
that EINZ gene also has a dual function in both
leaf senescence and seedling development, adding
EINZ2 as another ethylene pathway gene nvolved in
leaf senescence.
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