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1 INTRODUCTION

As an alternative to the Berkhoff’s (1972) elliptic equation approach to predict the transfor-
mation of waves, several coastal engineers obtained solutions to the time-dependent mild-slope
equations which were derived by Smith and Sprinks (1975) (or mathematically equivalent, Rad-
der and Dingemans (1985)), Nishimura et al. (1983) (or mathematically equivalent, Copeland
(1985)), Kubo et al. (1992), and Lee (1994). The application of the time-dependent mild-slope
equations are better than the elliptic mild-slope equation in terms of reducing disk storage and

computational time.

For the time-dependent model, waves can be generated by specifying values of the water
surface elevation or particle velocity, etc. as desired at the outside boundary at each time step.
Waves can also be generated by adding the values with desired energy to the computed ones
at the internal boundary at each time step. When the first way is used, problems may occur
because the waves which arrive at the wavemaker boundary from inside the domain would be
trapped and cause unwanted addition of wave energy. However, the second way solves such
problems by permitting waves freely pass across the wavemaker boundary while the desired

wave energy is generated at the boundary.

Here, we study the internal generation of waves for three typical time-dependent mild-slope
equations, Copeland’s, Radder and Dingemans’, and Kubo et al.’s equations, and find that
the velocity of disturbances caused by the incident wave can be obtained from the viewpoint
of energy transport rather than the previously argued mass transport. First, geometric optics
approach is used to get the velocity of wave energy for the models. Second, internal generation
of waves are studied. Third, numerical simulation of the models is made with the technique of

generating waves internally. Finally, summary and discussions are presented.
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2 ANALYSIS OF MODELS BY GEOMETRIC OPTICS AP-
PROACH

Copeland’s equations are given by

oy  C _
FTI ———V Q =0 (2.1)
%?— +CCyVn = 0 (2.2)

where C and C, are the phase speed and group velocity, respectively, of a wave with the carrier
angular frequency & and wavenumber £, 7 is the water surface elevation, and Q is a vertically

integrated function of particle velocity. Elimination of ¢ from equations (2.1) and (2.2) yields

@y C o
e gV (CCVn) =0 (2.3)

Radder and Dingemans’ equations are given by

o CCpn (@ -RCE,).
5 = "V (Ve s (2.4)
‘Z_‘f - —gn (2.5)

where @ is the velocity potential at mean water level. Elimination of 7 from equations (2.4) and

(2.5) yields Smith and Sprinks’ equation in terms of 7 given by

82

57~V (CCVn) +(@* - F*CCm =0 (2.6)

The Kubo et al.’s equation is given by
=9 L0 o= 01
V - (CCyVi) + kE*CCyfy + iV - ( (CC )V )+15a—)(k CCg)B-t- =0, 2.7)
where 7 is related to the water surface elevation by
,'7 — f’e—iot‘ (2.8)
For the case of a constant water depth, the propagation of surface waves is treated from the

geometric optics approach which leads to the ray approximation. The water surface elevation

can be defined as

n = Az, t)e'? (2.9)
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where the wave amplitude A modulates in time and space and the phase function 3 has the

following relation with the local wavenumber k& and angular frequency w as
k=Vy, w=-% (2.10)

Substitution of equation (2.9) into Copeland’s equation (2.3) yields the eikonal equation and

energy transport equation as

Eow
T3 (2.11)
942 .C _ .,
W‘P‘C—C—-VA =0 (2.12)
where the velocity of wave energy is
C.=C (2.13)

Substitution of equation (2.9) into Smith and Sprinks’ equation (2.6) yields the eikonal equation

§=\l1+%((§>2—1) (2.14)

) _
% + Cg-g- VA =0 (2.15)

where 2 = C,/C = (1 + 2kh/sinh 2kh)/2 and the velocity of wave energy is

Ce=éggJ1+%((§)2-1) (2.16)

The function % in Kubo et al.’s equation (2.7) can be written as

and energy transport equation as

fi = A(x, t)e¥+et (2.17)

Substitution of equation (2.17) into equation (2.7) yields the eikonal equation and energy trans-

%=J1+ 2C-1 (2.18)

A k141 B2
W“LC“E t 3 > wf’:( _”)_ VAT=9 (2.19)
-3 (1) -1) Bdecy)

where the velocity of wave energy is

_ 1 (w 2o ..\ 2(2 - 1)
Ceng(1+%(7—l>-‘—a—5——(CCg)) \,l-}— wk?a

port equation as

(2.20)
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Terms of second or higher order are neglected in deriving the eikonal equations (2.11), (2.14),
(2.18), which are used in getting the velocities of wave energy given by equations (2.13), (2.16),

(2.20), respectively.

3 INTERNAL GENERATION OF WAVES

Larsen and Dancy (1983) generated waves internally at the line parallel to the y-axis in the
Boussinesq equations (Peregrine, 1967) with the added water surface elevations of incident wave

as

CAt
7 =29 A2 cosf (3.1)

where 7 is the water surface elevation of incident wave, 8 is the angle of wave direction from the
z-axis, Az is the grid spacing in the z-axis, At is the time step. They argued that the velocity
of disturbances in the z-direction caused by the incident wave is C cos from the viewpoint of
mass transport. Likewise, Madsen and Larsen (1987) and Yoon et al. (1996) generated waves

in Copeland’s equations with the added water surface elevations given by equation (3.1).

Monochromatic waves are generated with the added water surface elevations given by equa-
tion (3.1) for the three time-dependent mild-slope equations. The methods of simulating the
equations are explained in section 4. For Copeland’s equations, the ratio of the resulted to the
desired wave amplitudes is found to be one in whole water depth. However, for Radder and
Dingemans’ and Kubo et al.’s equations, the ratio is found to be 1/ which is larger than one
in deep and intermediate-depth waters (see Fig.1). This requires a viewpoint different from the

mass transport in order to properly generate waves internally for any time-dependent model.

The time-dependent models predict the evolution of wave energy as well as the wave phase.
When the water surface elevation of incident wave is added to the computed one, there occurs an
evolution of wave energy which is expressed by the energy transport equation. So, the velocity
of wave energy needs to be used as a velocity of disturbances caused by the incident wave, and

the added water surface elevations would be

At
7 =2n! CZI cosf (3.2)
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The velocity of wave energy C, for Copeland’s equations is equal to the phase speed C acciden-

tally.

4 NUMERICAL VERIFICATIONS

The Copeland’s, Radder and Dingemans’, and Kubo et al.’s equations are numerically simulated
in one dimension to generate waves with the added water surface elevations given by equation
(3.2). Three cases of the ratio of the local to the carrier wave frequencies are tested (w/@ =

0.8,1.0,1.2).

Sponge layers with the thickness three times the local wavelength are placed at outside
boundaries to minimize wave reflections from the boundaries (Lee and Pyun, 1995). Thus,

equation (2.2) is modified as

4%

5+ CCyVn +wD,Q =0, (4.1)
equation (2.5) is modified as

8% .

X - _gn-wD, .

5 = "9 wDs¢ (4.2)

and equation (2.7) is modified as
V- (CCVi)+k*CC,(1+42iD )ﬁ+iV-(i(C_'C‘ )V—a—ﬁ)+iﬁ-—(EZC_'C' )(1+2:D )Q_ﬁ =0 (4.3)
9V Ty g : 3w 3 T e 9 /5t '

The damping coeflicient D, increases exponentially from zero at the starting point of the sponge

layer to one at the end.

The modified Copeland’s equations (2.1) and (4.1) are discretized by a leap-frog method in
a staggered grid in time and space. The modified Radder and Dingemans’ equations (2.4) and
(4.2) are discretized by a fourth-order Adams-Moulton predictor-corrector method in time and a
three-point symmetric formula in space. The modified Kubo et al.’s equation (4.3) is discretized
in time and space by the Crank-Nicolson method. The values at the initial time step are set to
be zero. Equation (3.2) is multiplied by tanh(0.5¢/T) to generate waves gradually. At outside
boundaries, perfect reflection is assumed, which causes negligible reflections inside the domain

bacause the sponge layer significantly reduces the incoming wave energy. The Courant number
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is Cr = C.At/Az = 0.1, the grid spacing is Az = L/20, and the time step At is determined
from the previous two conditions. The interior domain and two sponge layers cover 8 and 6
local wavelenths, respectively, {281 grid points in total). Waves are generated at the mid-point

of the domain.

In Fig. 2, the normalized water surface elevations in steady state for the three equations are
plotted along the lines with y = 0, 3, 6 for w/@ = 0.8, 1.0, 1.2, respectively. The cases of deep
water (kh = 2r) are shown. The wave amplitudes are shown to decay to almost zero at outside
boundaries. For Kubo et al.’s equation, the normalized wave ampliutdes are much larger than
one at the point of wave generation. For all the three equations, waves are generated properly as
desired, which proves that the use of the velocity of wave energy is the right way for the added

water surface elevations.

5 CONCLUSIONS

The technique of generating waves internally is studied for three time-dependent mild-slope
equations developed by Copeland, Radder and Dingemans, and Kubo et al. For Radder and
Dingemans’ and Kubo et al.’s equations, the desired energy of incident wave cannot be obtained
from the previously argued viewpoint of mass transport. This viewpoint suggests the use of the
phase speed for the velocity of disturbances caused by the incident wave. However, for all the
three equations, the desired energy can be obtained from the viewpoint of energy tranport which
suggests the use of the velocity of wave energy. This idea can be extended to any time-dependent

model.
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Fig. 1: Normalized wave amplitudes with n* = 27/CAt/Az

0
kh/x 10

Copeland’s model

wfw =12

Radder & Dingemans’model

w/o =12

-10 -5 c 5 10

normalized water surface elevation
~ IS
/
| y ]

{
}
|

~.
' )

normalized water surface elevation

Kubo et al.’s model

w/i;' = 1.2

6,
4l wfo=1.0
2 8/&7:08*
° V-
i
f
-2 ! -
-10 -5 0 5 10
z/L

Fig. 2: Normalized water surface elevations with 7* = 2yC.At/Az in deep water (kh = 27)
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