유기물 분리용 투과증발막

  • 박현채 (한국과학기술연구원 고분자연구부)
  • Published : 1996.03.01

Abstract

In the chemical industry, in the pharmaceutical industry, and in a number of other industries separation processes are necessary to separate and purify products and raw materials [1,2]. Separation processes are also widely used in other applications such as in recycling valuable materials from waste streams. Unit operations for separation processes can be classified in phase separation techniques and component separation techniques based on the nature of the feed mixtures to be separated. The former techniques are used for the separation of heterogeneous mixtures, in which the feed is already present in two or more separated phases on a micro-scale. The latter are suitable for the separation of homogeneous mixtures such as gaseous mixtures and mixtures of completely miscible liquids. tn these cases the separation into individual components is generally achieved by utilizing the differences in physico-chemical properties of components, and is much more difficult compared to phase separation techniques. Separation processes such as distillation, evaporation, liquid-liquid extraction, and crystallization belong to this class.

Keywords