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ABSTRACT In this paper, we consider a
ring loading problem, which arises in the design
of SONET bidirectional rings. We deal with the
case where demands are allowed to be split and

routed in two different directions. Even if integral

demands are given, the optimal solution of the
problem doesn’t always have integral values. We
present an efficient algorithm which produces an
integral optimal solution.

1. Introduction

The ring loading problem (RLP) is defined on
an undirected ring network R = (V,L) with a
node set V = {1,2,---,n} and a link set L =
{(1,2),(2,3), -+, (n—1,n),(n,1)}. Let K be the
index set of selected origin-destination pairs of
nodes. Then, for each &k € K, we are given ry
units of flow requirements (demands). For each
k € K, let o(k) and d(k), where o(k) < d(k),
denote its origin and destination nodes, respec-
tively. The demand between o(k) and d(k) can
be routed in either of two directions, clockwise
and counter-clockwise. We say that a flow is
routed in the clockwise (counter-clockwise) direc-
tion if a flow passes through the node sequence
{O(k)a O(k) +1,-- d(k) -1, d(k)} ({O(k)v O(k) -
1,---,1,n,---,d(k)+1,d(k)}). Since all the con-
stituent links of a ring have to be with the same
capacity, the capacity of a ring is determined by
the maximum of the traffic loads imposed on its
links. Therefore, the ring capacity determination
is dependent on how to route each flow require-
ment on the ring. The objective of the RLP is
then to find an optimal routing which minimizes
the maximum link load.

The RLP arises when designing synchronous
optical network (SONET) bidirectional self-healing
rings (SHRs). For more detalis on SONET SHRs,
refer to Wu [7] and Cosares et al. {1]. In a bidirec-
tional SHR, demands may or may not be allowed
to be split between both directions. We thus have
two kinds of the RLP, with and without demand
splitting. For example, in the RLP without de-
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mand splitting (RLPWO), each demand must be
entirely routed in either of the two directions. Re-
cently, due to its practical significance, the RLP
has been considered in many researches. Cosares
and Saniee [2] have presented several heuristics
for the RLPWO. Myung et al. [5] have developed
an O(n|K|) algorithm for the RLPW and an effi-
cient approximation procedure for the RLPWO.
Shyur et al. {6] have dealt with the integer version
of the RLPW where demands split are restricted
to integers. When the demands are integral, the
optimal solution of the RLPW, in general, may
be the multiples of half-integers. Lee and Chang
[3] have developed an approximation algorithm
for the integer case of the RLPW. Their algo-
rithm produces an approximate solution whose
objective value is at most one unit higher than
the optimal value. Lee et al. [4] have derived
a class of valid inequalities for the same prob-
lem and shown that the problem can be solved in
polynomial time using the cuts. However, their
algorithm is not shown to be a practical one. In
this paper, we develop a very simple algorithm
which produces an integral optimal solution for
the problem.

2. An algorithm for the integer version
of the ring loading problem with demand
splitting

Foreach k € K, let L] = {(i,3+1) € Ljo(k) <
i < d(k)} and Ly = L\ L{. Then L{(L;) de
notes the set of links contained in the clockwise
(counter-clockwise) direction path from o(k) to
d(k). Foreachl € L, let K ={k e K|l € Lj}
and K[ = {k € K|l € L;}. Then K;"(K|") is the
index set of origin-destination pairs whose clock-
wise (counter-clockwise) direction path contains
l. Note that K, = K\ K.

For each k € K, let’s define variable x; which
denotes the amount of the total demand between
o(k) and d(k) routed in the clockwise direction.
Let X = {x ¢ ZIK1|0 < 2y < ry, for each k € K7},



and for a given x € X, let

g(x,l) = Z Ti + Z (re —z¢) for each [ € L.
keK; keK[

Then g(x,!) denotes the load assigned to link .
Let F(x) = maxer g(X,!), then our problem, the
integer version of the RLPW can be represented
as follows:

(P) z= ggl)r(xF(x)

Our algorithm consists of two main procedures.

One is to produce a feasible solution to (P) and
the other is to verify the optimality of the solu-
tion produced and, if it is not optimal, to con-
struct an optimal solution based on the obtained
solution. The first procedure is the same as Lee
and Chang’s [3]. Initially, all demands are routed
in the clockwise direction. Then, for each k € K,
it examines whether rerouting all or a part of de-
mand k in the counter-clockwise direction would
decrease the ring capacity. Note that for a given
x € X, if max;e;; g(x,1) > maxe;- g(x,1) + 2,
rerouting demand k in the counter-clockwise di-
rection decreases the resulting ring capacity while
keeping the integrality condition. Demand k is
rerouted until either all the demand is routed
in the counter-clockwise direction or the rerout-
ing amount reaches to |(1/2) x {rnaxleLL—_ g(x,1)—
max;cr- g(x,1)}| where |a| means a largest inte-
ger not greater than a.

We assume that the indices of K are ordered
as follows: if o(k1) < o(ks), then k; < ko, and if
o(k1) = o(k) and d(k1) > d(ks), then k; < ks.
Such ordering of the origin-destination pairs of
|K| can be done within O(|K}log|K]|) time. In
the next section, we will show that the rerout-
ing sequence is very important for our algorithm.
Since demand k is examined at the kth iteration
of the rerouting procedure, we use the same in-
dex k for indicating both an origin-destination
pair and an iteration step. The first procedure of
our algorithm is formally stated as follows:
Algorithm Phase 1;

begin
[Initial assignment]
for each £ € K do

29 = ry;
[Rerouting|
fork=1,---,|K| do
begin

¢ := max{0, max g(x*!,1) — max g(x*"1, 1)}
leL,

" leL;
A :=min{[6/2],r¢};
xk = z’,;’l — A;

fori=1,---,|K|and i # k do

end,
end;

To present the second procedure of our algo-
rithm, we need the following notation. We as-
sume that the links are ordered such that [ =
(t,5) <lU'=(d,7)ifi <4 Foragivenx € X, let
L(x) = {l € Lig(x,]) = F(x) — 1 or F(x)}. Re-
call that x* denote the solution obtained after the
rerouting step of Phase 1 is performed for k € K,
x® = {ry,---,rx} and x'X| is the solution which
Phase 1 finally produces. Let I = min L(x/%)
and Iy = max L(x*) where k is defined as follows:

P max{k € K|, e L7} if{ke K|l e L]} #0,
0 otherwise.

In the example given in Figure 1, [; = (2,3), k =
2 and [, = (4,5). We also define a polyhedron
Y < RIXl such that

Y ={yeRH
w=0kecK NK} (1)
w=0keK NK, (2)
0<yr<ri, ke K® (3)
e <y <0,k €K (4)
o <y <rme— 2 ke K (5)
Zyk_ Zyk
keK; keK S~
< [F(x‘x)»l—g(xK,l)
= 2

Jx?.leL} (6)

where KO= {k e K : o)X =0}, K" = {k €
Kol =1, and K* = {k e K : 0 < o} <
T‘k}.

Now we describe the second procedure of our
algorithm. This procedure starts with x%/, the
solution produced by Phase 1, and constructs an
optimal solution of {P), denoted by x*.
Algorithm Phase 2;

begin
select 1, and Io;
if ma.x{g(x‘Kl, ll)vg(xu(la l2)} = F(xsK‘)
then x* = x/&1;
else obtain a vertex solution y € Y;
if no such solution exists, i.e., ¥ = @
then x* = x/¥1;
elsefori=1,---,|K| do
T = xim + W
end;

126



3. Proof of the validity of the algorithm

Before proving the optimality of our algorithm,

we will present some preliminary resulits for the
integer solutions x*, k € K, which are produced
through Phase 1.

Lemma 1 For eachk =1,2,---,
ing relations hold:

(1) L(x*"1) C L(x*);

(i) L(x*-1) C L} if and only if k € K°U K®;
(i) k € K® if and only if L(x*) \ L} # 0;

(w) Ifk € K" NK}, then k € K°; and
(v)Ifke K NK,, thenk € K".

|K|, the follow-

Proof:

(i) follows the fact that once a link is included
in L(x*) for some k, it remains in L(x**!). In
rerouting step k, L(x*7!) C L; if and only if
A > 0 and thus (ii) holds. A part of demand &
is rerouted, only when some link [ € L, newly
becomes a member of L(x*), that proves (iii).
Suppose that k € K, N K!, that is, [1,l, € L.
By the definitions of l; and Iz, I; < min L(x*) <
max L(x*) < I. Since Iy,l, € L], L(x*) C L}.
By (ii) and (iii), ¥ € K° because L(x*1) C
L(x*) C L}. So (iv) holds.

Finally, we prove (v). Suppose that k € K, LN
K,;, ie., I}l € L. Then the following three
cases are possible.

Case 1. max L] <lI,.

Since I; = min L(x!X1}, L(xX) N L} = @. From
L(xt1) C L(xIX)), L(x*~Y) N L} = 0, and thus
k€ K! by (ii).

Case 2. [} <minL] <maxL] <l,.

We first show that k —1 > k. When k = 0, it
is obvious. Suppose that & > 1. From L e L ,

o(k) > o(k), and thus k > k by our assumptlon
on the indices of K. Since Iy € L{x*) C L(x* 1),
L(x¥=1) ¢ L} which implies k € K by (ii).
Case 3. [, <minL].

In this case, it also holds that k —1 > k. So
k € K' as shown in Case 2. O

Lemma 2 For anyx € X,
9(x. 1) + g(x, 1) > g(xX 1)) + g(x¥, 1,).

Proof:
Consider any x € X and let A, = 75 — zk Kl for
each k € K. Then, for eachl € L,

- Ya-Ya

keK; keK

g(x,1) — g(x%1,1) (7

127

Summing two equations (7) for /; and 5, we have
the following results.

g(x7ll) - g<ng|7ll) + g(xv l2)

:22Ak—2ZAk.

keK; NK, ke K MK,

- g(x", 1)
(9)

By (iv) and (v) of Lemma 1, A; > 0 for each
k€K+ﬁK+andAk<0foreachk€K NK;.
Therefore the lemma holds. =!

Note that 1,1, € L(xK!), that is, g(x¥! 1) >
F(xK1y -1, for I = I,1,. So, the following corol-
lary holds.

Corollary 3 Foranyx € X, F(x)
and if max{g(x"!,1;), g(x'¥1,1,)} =
s an optimal solution for (P).

F(x*)~1

>
F (K1), xIKI

Moreover, Lemma 2 holds, even if X is replaced
by X = {x € R¥H0 < 2y < ry for each k € K}.
Therefore, the following relation also holds.

Corollary 4 Let z(P) denote the optimal objec-
tive value of the linear programmang relazation
of (P) where X is replaced by X in (P). Then,
F(xKly < 2(P) + 1.

Now we turn to our main proof.

Theorem 5 The algorithm, which consists of Phase

1 and 2, produces an optimal solution for (P).

Proof:

By Corollary 3, if max{g(x/%1,;),g(x/¥1,1,)} =
F(x!¥1), x/¥l is an optimal solution for (P). To
prove the remaining part, we need the following
two claims.

Claim 1 IfY = 0, then x'X! is an optimal solu-
tton to (P).

Proof:

Suppose that x*! is not an optimal solution to
(P). Then, there must exist x € X such that
F(x) = F(x¥ly — 1. Let yx = z — x'k ' for
each k € K. Then (3), (4) and (5) hold by
the definitions of K° K" and K®. By Corol-
lary 3, g(x*,1)) = g(x¥1,1p) = F(xK) - 1.
From Lemma 2 and the fact that g(x,1) < F(x/¥)—
lforalll € L, g(x,0h) = g(x,l5) = F(x‘K‘) 1
and

g9(x, 1) — 9K, 1) + g(x,12) — g(x1K1 1)
=2 > w2 Y w
keK; Ky keK DK,
_—

By (iv) and (v) of Lemma 1, y; > 0 for each
ke K'NK[, and y, <0 for each k € K NK.



Therefore, y. = 0 for all k£ ¢ KIT NK, and k €
K, MK, that is, (1) and (2) hold.

Now we show that (6) also holds. Note that
foreachl € L,

Zyk_ Zyk =

keK, keR

g(X, l) - g(lel7 l)

IA

PRy —1 - g(x%1,1).

So, it is sufficient to show that the left term of (6)
always takes even number. The following relation
shows this.

g(xz l) - g(leh l)
g(x, 1) — g(x®1, 1) + g(x, 1) — g(x'¥1, 1))

QZ Yk — 2 Z Yk

ke K NK; keK MK

The first equality is due to the fact that g(x, ;) =
g(x%1 1)) = F(x®1) — 1. Therefore, y € Y, that
contradicts the fact that Y = 0. C

Claim 2 IfY # 0, every vertezy € Y is integral.

Proof:

IfY # 0, Y has a vertex, since Y is a bounded
polyhedron. Let § be any vertex of Y. Let K~ de-
note the set of indices corresponding to 9i’s, each
of which satisfies at least one of the constraints
(1), (2), (3), (4) and (5) at equality and L~ de-
note the subset of L corresponding the members
of (6) that are satified at equality by §. Let A de-
note the constraint matrix given by (6) and A be
the submatrix of A having its columns in K\ K=
and its rows in L=. Let b be the || x 1 matrix
whose elements, b;, | € L are given as follows:

KNy _ 1 — |K|
bl:[F(xK) 12 g(x ,l)J><2

= >+ D ke

ke K UK™ ke KUK~

Note that all elements of b are either even or
odd. Let b be the submatrix of b having its ele-
ments in L=. Since § is a vertex of ¥, A has full
column rank and § is the unique solution of the
equation system Ay = b. Let |K\K=| = m, A* be
the m x m submatrix of A obtained after deleting
the redundant rows and b* be the submatrix of b
corresponding to the rows of A*. Then A*y = b*
is equivalent to Ay = b.

Now we show that A*y = b* determines an
integral solution. If m < 1, it trivially holds. As-
sume that m > 2 and apply Gaussian elimination
to the equation system. A sequence of elementary
row operations are performed iteratively so that
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A” is transformed to an upper-triangular matrix.
Let (A4,b) denote the matrix which is obtained
after performing Gaussian elimination. We will
show that each element of the upper-triangular
matrix A is equal to 0, 1 or -1 and b is an in-
teger vector. In the first iteration, the first row
of (A*,b"), is added (or subtracted) to (or from)
the other rows so that the first element becomes
0 in those rows. Then, every element in the sec-
ond and subsequent rows is equal to 0, 2 or -2
and b}, j > 1 has even number. Divide every
element in the rows other than the first one by
2 and add (or subtract) the second row to (or
from) the third and subsequent rows so that the
first and second elements set equal to 0 for those
rows. We continue this process until we obtain
(A,b) as defined. Consequently, all variables g
for k € K\ K~ should have integer values. Note
that the other variables y; for kK € K= are as-
sumed to have integer values. o]

Let y be any vertex solution of Y, then x'X!+y
is an integer solution, x| + ¢y € X (by (3), (4)
and (5)) and F(x/X! +y) < F(x&!) — 1 (by (6)).
This completes the proof. a
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