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Abstract: This paper is concerned with the
design of robust state feedback controller for a class
of linear time-delay systems with norm-bounded
nonlinear uncertainties. Under the proposed delay-
independent criterion, asymptotic stability for the
system is investigated using the conventional Lya-
punov method. Moreover, the robust controller can
be obtained by solving the linear matrix inequality
which is equivalent to the suggestd conditions.

I. Introduction

The problem of the stability test and stabilization
of time-delay systems has been explored over the
decades. Many different approaches to solve the
problem have been proposed [6,8,10,11,13]. How-
ever, accurate modeling of time-delay systems is not
simple, so uncertain parameters and disturbances
must be integrated into the model. Recently, the
robust stabilization of a class of time-delay systems
with linear time-varying uncertainties has been
considered in {1,9,10]. In Cheres et al[l], using
Razumikhin stability theory[4] for robust controller
design in conjunction with Lyapunov stability
theory, a class of stabilizing nonlinear controllers
for uncertain time-delay systems are synthesized
and furthermore the control law developed is not
continuous. In Shen et al. [10], the memoryless
linear control law is presented to stabilize the
uncertain system using Riccati equation approach.
And Mahmoud[9] stabilized the system using two
feedback controllers. One is linear memoryless and
the other is of saturation type. In the case of control
law of staturation type, the asymptotic stability of
resulting closed-loop system is not guranteed.

In this paper, we investigate the robust sta-
bilization of time-delay systems with nonlinear
uncertainties using conventional Lyapunov func-
tion theory. In order to stabilize the system, a
continuous memoryless state-feedback controller
is presented. The control law consists of two
parts. one is a linear memoryless control law which
stabilizes the nominal sysetm and the other is
a nonlinear continuous control law of saturation
type which stabilizes the uncertain portion of the

system. In the proposed condition, it is proved that
the resulting closed-loop system with this control
law is asymptotically stable in large. We may
obtain the robust controller by solving the linear
matrix inequality(LMI) which is equivalent to the
proposed condition. In contrast to existing results
on delay-independent robust stabilization, such as
those in [1], [9] and [10], the LMI approach has
the advantage that can be solved numerically very
efficiently using interior-point methods|[16]-[17].
The organization of this paper is as follows.
We give the mathematical preliminaries in Section
2. In Section 3, the memoryless state-feedback
controller to guarantee the exponential stability of
the system is introduced. In Section 4, conclusions
are provided.
Notation. The following notation will be used
throughout the paper. R" denotes the n dimen-
sional Eulidean space. R™™ is the set of all nxm
real matrices, and || - || refers to either the Euclidean
vector norm or the induced matrix 2-norm. Given
an nxn matrix M, Anmin[M] denotes the mini-
mum eigenvalue of the matrix M. The notation
X > Y(X >7), where X and Y are symmetric
matrices, means that the matrix X — Y is positive
definite(positive semi-definite) matrix. A super-
script T denotes the transpose of matrix(vector). I
denotes n-dimensional identity matrix.

2. Robust stabilization

Consider a class of time-delay system with
nonlinear uncertainties described by the following
differential-difference equations:

z(t) = Az(t)+ Aiz(t —h) + F({t,z(t))
+Fy(t,z(t — h)) + Bu(t),
x(t) = o(t), te[-h0] (1)

where z(t) € R" is the state vector, u(t) € R™
is the control input, the known constant matrices
A, Ay, and B are of appropriate dimension, h > 0is
a delay time and ¢(t) is a continuous vector-valued
initial condition function. The plant uncertainties
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F and F); are unknown and are used to represent
nonlinear parameter perturbations with respect to
the current state z(t) and the delayed state z(t — h)
of the system, respectively. But F' and Fj are as-
sumed to be bounded in magnitude. A system is
said to be robustly stable if it is tolerant of change
in certain specific bounds of perturbation. With the
plant model given by (1), the problem is how to
synthesize a continuous control law wu(¢) that can
guarantee asymptotic stability.
Now, we introduce the necessary assumption and
lemma, with regard to the sysem given by (1), which
will be used in the stability proof later.
Assumption 1: The matrix pair (4, B) is a uni-
formly completely controllable pair. And for all
(t,z) € RxR"™, there exist continuous matrix func-
tions f(-) and fi(-) which satisfy the following
matching conditions|[2]
F =Bf(t,xz(t)), FA =Bfi(t,z(t —h)). (2)
Here, the nonlinear matrix funtions f(¢,z(t)) and
f1(t,z(t — h)) are bounded, i.e.

f (& 2N < Bollz(@)l [1Lf1(t, z(E—R)I| < Bullz(E—R)]|

3)
where 8y and 3 are given positive scalars.

It should be noted that the matching condition
given in (2) is often not satisfied in many applica-
tions.

Lemma 1[5} For given any constant a > 0 and any
two suitably dimensioned matrices X, Y,

XYT + Y XT <aXXT + lyyr (4)
a

Under above assumptions, consider state-
feedback controller to guarantee the asymtotic
stability of time-delay systems with nonlinear
uncertainties.

'U,(t) = ’lt](t) + Uf_)(t), (5)

where
w(t) = —1BTPx(t), (6)
ws(t) = - BTP@"AQE)ZH'T“Z (7)

| BT Pz Bolll + 5|zl

where v and ¢ are positive constants and P is a
positive definite matrix.

Remark 1: A state-dependent function ||z (t)|}?
is included into the control (7). The function is
used to construct the continuous control law of
saturation type in [15]. This is different either from
[9] where a constant ¢ is used, or from [3] where a
time function ee~?! is emploved.

To examine the stability of the system (1)

with control input u(t) (5), we define a Lyapunov
function candidate V(-) : R"XR, — R, as

Viz,t) = % (xT(t)Pm(t) + /tih J:T(S)R:c(s)ds>

(8)
where R is a positive definite matrix.

Then, based on consideration of the Lyapunov’s
direct method, we have the following theorem which
shows asymptotic stability of dynamical sysem (1)
with control input u(t) given in (5).

Theorem 1: Let us define M as

—(4TP+PA- ('yT— 1)PBBTP + R)
—ATpP

—PA;
R-pBiI
(9)
and suppose assumption 1 is valid. If there exist
positive scslars €, v, and (nxn) positive definite ma-
trices P and R such that

M =

Amin(M) —€ >0, (10)
ie.,
M, = R-BI-el>0 (11)
M, = ATP+PA—(y-1)PBBTP+R

+el + PA(R— 321 — ) 'AT P <(02)

then, the uncertain system (1) under the action of
the state feedback controller given in (5) is asymp-
totically stable.

Proof: Let z(¢) be the solution of closed-loop dy-
namical system (1), and V(t) denotes V(z,t). The
time derivative of V'(-) along the trajectory of sys-
tem (1) is given by

X

. 1

V() = 3 (7(t)Pz + 27 P& + 2 Rz — ] Rxy)
_ _lor[ -(ATP+PA+R) -P4
2 -ATp R

+ 2T PBf +2"PBfi + 2" PBu(t) (13)

where .z, = x(t — h), X = [zT(¢) zf]7.
Here, the follwing inequality holds

tTWPBfi < (T ()PBBT Pz + fIf1) (14)

| —

< (2T (t)PBBT Pz + 37T 2{)15)

N —

where Lemma 1 is used in the first inequality.
Then, using (6) and (15), we have the following

: 1
V() < —§XTMX + [|BT Pz||3o||z|| + 2T PBus,.
(16)
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Substituting (7) and (9) into (16) and after some
manipulation,

BT P|| o] 5} |
|BT Pz||Bollll + 5]z
(17)
Here, the Hermitian block matrix M is positive
definite if the conditions (11) and (12) is hold[7].
Then, using Rayleigh’s coefficient [14] and using the
inequality ab/(a + b) < a. ¥V a,b > 0, we obtain a
new upper bound on V'(¢),

. 1 .
V() < —§XTMX +

V(t)

IN

1 S A
— ZAmin A AT =L
Soin (ADIXI + ]

1 . £ .
S ‘"’2‘/\min(1\’1)“z“2+ 5”1“2 (18)

Here, the condition (10) is satisfied, we have
V(t) < 0 and we conclude that the closed-loop
trajectories of the uncertain system (1) under the
action of the control law (5) are asymptotically
stable.

In above Theorem, if we choose the matrix R of
Lyapunov function given in (8) as R = (1+ 3} +¢)1,
we have the following corollary.

Corollary 1: Assume that there exist a positive
definite matriz P and a positive number ~ which
satisfy the following inequality:

ATP4+PA-P((v=1)BBT - A, AT P+ (1432 42:)T < 0

(19)
Then with the state feedback controller u(t) given
in (5), the uncertain system (1) is asymptotically
stable.
Proof: The proof is obvious, and is omitted.

Remark 2. The control (5) consists of two
parts u;(¢) and wux(¢). Here, u; is a linear state
feedback controller which stabilizes the nominal
system and the delayed perturbation F3(-). and us
is continuous nonlinear state feedback controller
which is used to compensate for the system uncer-
tainty F'(-) in system (1) to produce an asymptotic
stability.

Remark 3. The criteria for robust stabilization
given in (11) and (12) are mainly affected by A,
and 3;. Upper bound 3y does not affect the crite-
ria directly but can cause gain of u» to become large.

In Corollary 1, we can convert the condi-
tion (19) to the following LMI problem which is
equvalent to the condition. For details of LMI
optimization problem. see [16]. [17]. and refences
therein.

Corollary 2. The inequality (19) is equivalent to
the LMI

Q(X,e.9) <0 (20)

where
XAT 4+ AX + G XHY? X B
. HY?2x -7 0 0
QX ¢, =
(X2 V2X 0 - 0
BT 0 0 Y
G = BBT+4,AT, H=(14+3)1, X=pP!

Proof: The above LMI is equvalent to the follow-
ing matrix inequality [7]

XA" 4+ AX - ((v-1)BBT ~ 4, 47)
+ (14+8)XX +2:XX <0.
then

If we prmultiply and postmultiply by P~!,
there results (19).

Remark 4. Corollay 2 provides a delay-
independent condition for robust stabilization
of linear uncertain time-delay systems in terms of
the solvability of a linear matric inequality. This
is in contrast with the result of [1}, [9] and [10]
which developed delay-independent criteria for
robust stability of time-delay systems in terms
of the solution of either a Lyapunov or Riccati
equation. The robust criterion of Corollay 2 can
be tested numerically very efficiently using interior
point algorithms[16-17], which have been recently
developed for solving linear matrix inequalities.

3. Example

In this section, we illustrate an example to show
that the proposed controller gurantee the robust
stability.

Consider a time-delay dyvnamical system with
uncertainties described by

(t) = Ac(t)+A (t—h)+F (¢, () +FL (¢, xp)+Bu(t)

=V o] =0 03] m= Y]

with z(t) = [1 - 0.5)7 for =1 < t < 0. and the
delay his 1. In simulation, we assume the following
representation of uncertain functions:

where

0.5 03
0.3 05

ft.z) =0.5sinx3, fi(t.xy) = 0.5sin(z, (t—h)zs(t—

f and f, are assumed to be bounded by 3; = 0.5
and J; = 0.5, respectively.

The design goal of this example is to stabilize the
system by the state feedback control law (5).

The solutions of the LMI (20) are given by

p_ | 4335 12156
T 12156 0.7188 |-
v = 215523, ¢ = 0.0635.
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Then, the control law (5) is

u(t) = —(13.1zy + 7.7457x,)

0.51/1.477722 + 0.516722/ + 0.03175,/%
(0.303921 + 0.1797z,)/x

where /T = \/z? + z3.

By this, it can be conclude that the system of the
example is exponentially stable by the control laws
(6) and (7). To comfirm this, the results of the simu-
lation of this example are depicted in Figures 1 and
2. It is shown from Figure 1 that the closed-loop
system is indeed exponentially stable. And it is ob-
vious from Figure 2 that the control proposed in this
paper is continuous, and no chattering will appear
for the control.
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o

Figure 2: Control trajectories

4, Conclusions

The robust control problem of a class of
time-delay systems in the presence of nonlinear
uncertainties has been discussed. Based on the
Lyapunov method, we propose an approach to
synthesizing a class of continuous state feedback
controller. The conditions under which the state
trajectory is asymptotically stable are proposed.
Moreover, it is shown that the proposed conditions
are equivalent to the LMI problems. The problem
can be easily solved by numerical method developed
recently.
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