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Abstracts In this paper, the eigenstructure of a class of linear time varying systems, termed as lincar quasi-time invariant(LQTI)
systems, 1s investigated. A system composed of dynamic devices such as linear time varying capacitors and resistors can be an
example of the class. To effectively describe und analyze the LQTT systemns, a generalized differential operator G is introduced. Then
the dynamic systems described by the operator G are studied in terms of ecigenvalue, frequency characteristics, stability and an
extended convolution. Some basic attributes of the operator (G are compared with those of the differential operator . Also the
corresponding generalized Laplace transtorm pair is defined and relevant properties are derived for trequency domain analysis of the
systems under consideration. As an application example, a LQTI circuit is examined by using the concept of eigenstructure of LQTI
svstem. The LQTI filter processes the sinusoidal signals modulated by some functions.
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1. INTRODUCTION

[n the theory of linear time invariant(LTI) systems, the
elgenstructure 15 a very 1mportant concept for analysis and
applications. By virtue of the eigenstructure, the linear time
invariant systems can be analyzed by simple algebraic methods
and their results are easily applicable to various kinds of
engineering areas such as system control, circuit and filter
design, signal processing and  communication. The
eigenstructure of LTI systems 1s derived from the characteristics
of the differential operator D which is known to be the most
basic operator to describe dvnamical phenomena of the nature.
The eigenstructure of the LTI systems are described by
eigenvalues and eigenvectors.

In this paper, we detine a new operator G composed of the
differential operator D and some given time tunctions to
describe dynamical phenomena ot the nature. It will be shown
that LQTI systems are described by constant system matrix, that
15, the LQTI systems described by (5 operators are shown to have
the same eigenstructure as the case of LTI systems described by
D. It will be shown that LQTI systems can be analyzed in a
similar way as in LTI systems by using the relation of eigenvalue
and eigenvector 1n the time domain. A point of the complex s-
plane in the traditional Laplace transformation represents an
complex exponential tunction, while a point in the extended
Laplace transform space has 4 ditferent meaning. In case of the
latter space, a point represents an complex exponential function
modulated by some function.

The convolution 1s a basic operation for LTI systems,
representing a filter. In this paper, an extended convolution for
the LQTI systems s also developed. And the LQTI circuit
device is defined with the purpose to construct the LQTT filter.
Finally, we give an example of a physical LQTI filter. The LQTI
filter 1s very difterent from the LTI filter and has many usetul
properties in comparison with a Wiener filter or a Kalman filter.

2. LINEAR QUASI TIME-INVARIANT SYSTEMS

In this section, a dynamic operator G is introduced to handle a
class of linear time varying systems called LQTI systems. It will
be shown that the LQTI systems have invanant eigenvalucs
regardless of coordination transtorm, and that analytic solutions
of the LQTI systems can be obtained. To be specitic, let the
operator G be defined as
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Gx(t)= gl(t)gt—x(t) + g, (OH)x(1)
=(g,()D + g,(1)x(t)
where g,(f) and g,(1) are arbitrarily given functions with

(n

£ ()= 0 and x(t) is a variable. In the sequel, the independent
variable t may be dropped for simplicity when no confusions
arise. Obviously, the operator G 1s linear. The operator (7 has the
following properties corresponding to those of the differential
operator D.

Theorem 2.1 : Suppose Gx = Ax for some x and some
constant A . Then, tor any non-negative integer »,

G'x=A"x,

where G'x = G(G™'x).i =23, ,n, and G'x = Gx.

Note that the solution of the ditferential equation Gx(1) = Ax(t)
is x(1)= cexp(ﬂ(ﬂ, -g,)/g dr), where ¢ is a constant

determined by the given initial condition. Since the operator G is
linear, we can easily prove the above property by the induction
method.

Theorem 2.2 : For a < b let G[,,.b,’I denote the inverse of

the operator G such that
SrE e, »’SA‘;i‘d;
Gy 'y = 507 , ;((Tr)) o gy @)
1

Then, for some function x(1), GG, "x=x_ for all t>0, if
Glov,]'lx exists. Also, it x(0) =0 then G[O.,]’lGx:Y for all
t >0, 1e., the operator G and GN,]’1 commute if x(0) =0

Proof : The first property can be proved by showing that
GGy, 'x = x From (2)

K, e g
GGy 0= Ge 57 [ 2o
i gl
[ B, ('8 ge [ B2a- "B
:gl(_&(. j«‘:; j'_"‘_'_e-’:g, dr+e 28 ;Eej‘gl )
& ‘g &
[ Rar e dgr
+g,(e b J. Xt Tdr)
o gl
= x(1)

Theretore, Gy, ' is the inverse of G for all >0 . Next, to

prove the second property that Gy, Gx = x with x(0) = 0.



observe that Eq. (2) implies
G, (G =e /J“f’”"(ﬂ %eji%d:dr)
=31

= e/'[’ jd:(Jﬂ.i’eL %d’:dr + Jd gixejj d?:dr)
0 [} g]

T8 ge

= x(1) - x(0)e b

= x(1) it x(0)=10

which means that G and G[o_,]'] commute tor all >0 if

x(0)=0. QED.

Consider now the following homogeneous ditterential
equation expressed in terms of the operator G :
G'x+a, G x+-+a,Gx+a,x=0 (3)

where 4, .(1=01.2.---.n—1) are constant coefticients. From the
linearity and Theorem 2.1, we find that Gx = Ax implies
Ava, A +ra A +a, =0 (4)

The characteristic equation of the differential equation (3) has
apparently the same form as that of the LTI ditferential
equations. However, the physical meaning can be quite different
from each other.

To obtain a closed form solutions of Eq. (3) to handle LQTI
systems, detine the state vectors as follows:

X, =X,
x, =Gx,,
x, = Gx,, (5)
X, - G 'x
Then
Gx, =—a, \x,— —a,x, . (6)
Hence, we find from Eq. (3) that
Gx = Ax. x(4,) = X,. (7
where

=[x, T
Gx = g (1Dx+ g,(1)x,

Dx=[Dx D, |

0 1 0 0
60 0 1 - 0
Tdy—a = dy—a,,

In the above, the superscript ¢ denotes the transpose.

Theorem 2.3 : Suppose that the eigenvalues of the matrix 4
in Eq. (7) are distinct. Then, the solution of Eq. (7) 1s given as
follows :

5(1) = PO(P (1, ) (8)
where
Rt L PR et LA PN B g
Q(l‘):dl‘ag(e"i PXEs) ,e‘j PAER) '--,eJ: gir ) (€))]

PUAP = diag( A, A+ )
In case when 4 involves multiple eigenvalues 4, with
multiplicity m,  where =12 k. and ny +m+-tm =n
and the eigenvectors corresponding to 4; are also multiple with
the corresponding multiplicity #; | then
X(t)= PS(OOOP'x(1,) (10)
where
1) = diag(Q, (1).0, (1), 0, (1)) (11)
with

j"%,*ﬂfld, I'ﬁ:&s‘,-’,’d. A gDy,
O () =diag(e” ®7 g7 ®T g7 &Iy (1))
=m, X m, matrx
and
S(1) = diag(S,(1).5,(£).--.5, (1)) (13)
with
- , .
1 oc(t) a(t) ﬁ(_tl__
2! (m, = 1)!
m-2
0 1 a) xOn _
S.(t)= (m, =2)! |=m, X m, matrix (14)
0 0 0wt
00 0 1 |
where
ro
a(t)y= dr 15
J &(r) (1)

The proot ot the above Theorem 2.3 is given in Appendix A.
3. EXTENDED LAPLACE TRANSFORM

The stability ot the LQTI systems is determined by the roots
of characteristic equation or the eigenvalues of the system
matrix. The LQTI systems can also be analyzed in the frequency
domain as in LTI systems. For this purpose, an extended Laplace
transform is introduced. This transform enables us to convert the
LOQTI systems with initial conditions into simple algebraic
equations.

Definition 3.1 : Extended Laplace transform pair.

Let x(¢) be a function on [0.2) . For arbitrarily given functions
&) and g() with 1/g(t)>0, the extended Laplace
transform of x(f) and its inverse transform are detined as
follows :

- & 4
L[)f(t),.g’o(t),gl(t);s‘]:j'0 gi((%e bt dt (18)
S1
=X(s)

j’:—‘gg(.‘)dT

“lp oy R T T o g (1) )
L [“(‘s)'g"(l)‘gl(t)”]_EJ}E afw[“‘(s)e 2 ds (19)
=x(t)

where s=0+i® is a complex variable and o, is chosen so
that all the singular points of X(s)lie to the left of the line
Re{st = o, in the complex plane s=o+iw [4]. If there arises
no confusion, L[x(1). g, (1).g(1):s] and L7'[X(s),g,(t), g, (1)
t)in Eq. (18) and Eq. (19), respectively, will be represented by
Lix(t)]and L'[X ()] for simplicity. If £,{()=0 and g()=1,
the extended Laplace transtorm becomes the traditional Laplace
transtorm.
Definition 3.2 : Extended exponential order{2]{8].

For arbitrarily given functions £,(f) and g (¢) with 1/g(1)>0_
a function x(7) 1s said to be of extended exponential order with
to{g,(1). & () on [0.0) or
exponential order on [0.5¢) , if there exist constants @ and [
such that

respect simply of extended

le(ryf < gt (20)

forall t>0.
We now will prove the existence of the extended Laplace
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transform.
Lemma 3.1: If x®zx,(t) on

[a.b] with b>a | then Gy, %, (1) 2 Gy 'xy(0).

some interval

Proof : Since x,(2) = x,(#) - x,(f) is non-negative on interval
[a.b] by the assumption, it follows from (2) that G,y %(f) is
always non-negative.

operator Gy, it follows that G,y 'x(8) 2 G, 'x,(1).

QED.
Lemma 3.2 : Let x(¢) be continuous on [0.%) and Gx(t)

Now, from the linearity of the inverse

be of extended exponential order for some functions { g(2),
20o(1) }. Then x(¢) is of extended exponential order on [0,%) .

Proof : By the assumption, Gx(¢) is of extended exponential
order on [0,%) . That 1s,
such that

there exist some constants @ and S

j-‘afxad, 'f'“;ﬂd«
pet B <Gx(1)< fe B

where Gx(t) is defined. Apply the inverse operator G[M/l to

for all t>0

each term of the above inequality. By Lemma 3.1, the directions
of inequalities are unchanged. Hence

gl gy

Bug. j‘u (&) £

)= ﬂg;d e =¢ L PG

‘& (T)

&y d'
“ gu(é) dr

jg(r)

If we let 8(7) = ['1/g,()dé.

J‘agod,
0

[0 t]_l(ﬁe & dr

J"ﬂ £ 4
o g )_ ﬂe“gde
ﬂ .r“ 8o 4, & 4
=2 "
a

Ro g,
-1 I 8(1)
G[O ] (ﬂe T J‘

8 —e “g; )

Also, it follows from Theorem 2.2 that G[o,,{lGX(t)=x(f)*

x{0)exp(—~ }’ 'go /£,dt) Rearranging the above results, we find :

ﬂ I——da L ~[ 814 - 8uge
(en —e 78 Y<x()-x(0) &
Sﬁ(eﬂ%dr _67 u‘Ig?rdr)
a
For x(0)2 0
T hog S ge [y
(i< £ S B e
j"ﬂ, L1
<Be” forall >0
while for x(0) <0
A 85 ¢ g°d‘ - ’ﬁc‘—dr
‘Y(T)|< £, = ﬁ gr —x(0)e &
J‘az g)d
<fe” forall +>0

Therefore, we can find ¢, and g, such that

ag g
|x(t)|§ﬂ36£ 7 for all >0

o, = max(e,.«,), [, =max(f5,4).
follows that x(#) is of extended exponential order on [0,)
QED.

Theorem 3.1 : Existence of Extended Laplace transform.
Let x(t) be a piecewise continuous function and of extended

where, Therefore, it
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exponential order w.r.t some functions £{?) and g(f) on
[0.) . Then L{x(#)] exists. Also, there exists a constant o
such that

J -0 B,

* g
converges for all Re{s}>a.

Proof : It is recalled that if ]ll(f )lﬁ"(l ) for all t>a . then
ru(t)dt exists whenever jKV(t)dt exists. Let @ and B be

chosen such that ‘x(t)q < Bexp(fola—g,)/ g dt) forall >0

because x(f) is extended exponential order. Then

‘]z_rﬂe o 0BG op
L S10))
« 1 hae*
=ﬂj cg(s) d[
¢ g ()

Ifwe let 0= J::l/ g dr , then

J=tim L1 - ey
e §—

=Ref{s}—a and £ = 1mo,)

Also, let o,

s (1-e%7) ifp<owo
s—a
J= s ifp=cwcand o,>0
s—a
t o ifp=cwand o, <0
undefined ifp=oand o, =0

Therefore the comparison test implies that L{x(£)] exists for all
Re{s} > a . QED.

We now present several properties of operator G for the
extended Laplace transform.

Theorem 3.2 : Let x(¢) be a continuous function on (0,%)
such that Gx(#) is piecewise continuous function of extended
exponential order on [0,0) . Then L{x(#)] and L[Gx(#)] exist,
and

LIGx()] = sL{x(£)] - x(0) @

More generally, if x(#),Gx(t),---,G"'x(¢) are continuous and
G"x(1) 1s piecewise continuous and of extended exponential
order on [0,%) , then

LIG*x(1)) = sZX(s)—lrill(}[sx(t)wLGx(t)] 22)
= s X(5) - sx(0) - Gx(0)
LIG"x(t)} = s"X(s)— l’i_I}'(‘}[s"'lx(t) + 5" Gx(t)+-+G  x(1)]

= 5" X(5) = 5" x(0) ~ 5" 2Gx(0)~-~G"' x(0) @3

where G*x(0) = im[G*x(0)), k =12.-+,n -1

Proof : By Theorem 3.1, L{x(¢)] exists when Gx(f) is
piecewise continuous and of extended exponential order. To
establish (21), we integrate by parts as follows

(5B,
LIGx(0)] = I: g (Dx(1) 'Zjo(t)x(t) B "
g
gl _ptsmgylo) -
G dt+.[ g"(t)x(,)e e dr

_J. x(t)e



fsgtn) h SR
.[; g () d‘ © X f g0 o
; +sJ' —— e ®

o g(1)

=x(t)e dr
=5X(5)—-x(0)
In the third line of the above derivation, we find that

[T Bug:
&

S

lim|x(t)e \ <llmﬂej e

0 it Re{s} >« and limJ;:Ldz':so
P &1
Pl ” it lim [ - dr = p
1—ox JO
&
since x(f) is of extended exponential order. Therefore, when
Re{s} is sufficiently large, we can obtain Eq. (21) with the
assumption of %im ﬂl/g,dr = Finally Eqs. (22) and (23) can
be established by repeating the result (21). QED.
Theorem 3.3 : If x(r) 1s piecewise continuous and of

extended exponential order on [0,%) | then so is Gp,*(¢), and

L[Gy,x(D] = Lpe be " f EON ‘)

1 24)
=—L[x(1)]
S
More generally,
LIGyy +Goyx(D) = — L{x(1) 25)

Proof : By Lemma 3.2, G{gl,,]x(l‘) is piecewise continuous
and of extended exponential order on [0,%0) . To prove the basic
formula, we use integration by parts again as follows:

LGy pe01= e 75 TI =015 g

_J'“l

J‘ x(u) jg, dule J:Jg:gnd'dt
8

L L [ el
N

4o rx(t) ! dr
’ g

0

-Lxe
Ay

In the third line, when Re{s} is sufficiently large
(A . 8 g
lim e L,,l j x(u) i £
1o 0
&
because x(f) is extended exponential order. Finally, (23) is
established by iterating this result. QED.
Theorem 3.4 : Complex shift.

du=0

It
Lix(0]= X(s)
then
L[ejﬂgdrx(t)] = X(s+a) (26)
Proof : By definition,

ET i « o ar
Lle J.Dg‘d x(D)= J'O Le J‘”‘"

e
x(t)e b5

J-(:argud

.f —x(t)e 8 g

rdr

il

X(sxa)

QED.
Next we shall consider the convolution property of LQTI
systems [6]{7]. Define the extended convolution ® of two time
functions as follows
y(1)=h(H®u(t)

1
= h(t.t(r)dr
jlo g]( T)

[ et

27)

L[ B g
Len®

w(r)dr

&(7)
where,
g5
h(t__r)=h(Jd l ~d{)e s
&)
We sce that Eq. (27) 1s equal to the traditional LTI convolution
if g(0)=1and g,(1)=0
Thearem 3.5 : Extended Convolution Theorem.

lim v(1)= ['1/g,(£HE = .

convolution of two functions h(r) and u(t) as in Eq. (27). Then,
taking the extended Laplace transform of both sides on Eq. (27),
we have

Suppose  that Consider  the

Y(s)= H(s)U(s) (28)
where,

Y(s)=L[y(1),g0(1). 8,(£):5]

= L[A(6)Bu(t),g,(2), £,(1); 5]
while

H(s)=L[h(1.0). g,(£). g,(t):s], U(s)y= L[u(t).g,(1).g,(t):s].
Proof : From Eq. (27), we find that
Ly(n)]

£ 4, L"Sn(g’dz
—d 8 u(r)dr 89 dr
-l jg(r) jg(:) or 1 )gl(r) K
h( dee 5 e
ot e T
J.I (t)gl(f)I (&)

where the integration in the first line is pertformed over the first
eighth region of the 77 - plane represented by the inequalities
0<7<r¢ and 0<r<wx
See Fig. 3.1. But this region can be represented by
O0<r<ew and 7r<f<®

A 1=t

Y

Fig. 3.1 Region of integration

Therefore, the double integral in the first line can be written as
that of the second line.

e [ f

d ——d
& +J‘ :

’W

Then,
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dw = L dt j'-]_dg:w+j’Ld5
e b g

&
Hence,
LIy()] e ) .
« pu ST Nk Bt et g
:J'O J h(w)e T u(t)e e dwdr
(T) ) e
:J.Oh(w)e”'wdwj.0 u(r)e O g

= H(sYU(s)
On the other hand, we have

ﬁ‘i‘g f."_._gL(f_Jd:
L[h(tU)] I—dg) vg‘(g) e 2 () dt
(’) &£ )
L —dﬁ) Tai (29)
o () P g(H)
= J‘Oh(v)e ~ dv
= H(s)
QED.
4. APPLICATION

In the traditional LTI circuit theory, some analysis and design
of LTI filter are based on the concepts of eigenvalue and
eigenfunction in relation to the differential operator D. In the
LQTI system theory, there is also an eigenstructure explained in
terms of eigenvalue and eigenfunction corresponding to the
operator G. Therefore, there 1s a very simple method to analyze
and design of LQTI filters as in case of LTI filters. To be
specific, we consider as an example a physical circuit including
a varactor diode as a time varying capacitor ¢(f) and a voltage
controlled resistor #(f) as a time varying resistor as shown in Fig
4.1. For small signal analysis, i-v relations ot the devices ¢(t)
and (1) are modeled as

dv dc
=c(t T
f=elt) dt dt
[ =—V
(1)
Consider now the LQTI system shown m Fig 4.1
l('t
1()7 )
it
(—). + V([) - —»
il1)
(1)

Fig. 4.1 LQTI elementary circuit G .

Then, 1t follows that
I=1i + 1'
ac(l)
— )
dt (z) dr (30)

s
= gl(f)z+go(t)v

That is, i = Gv where G = c(OD +(1/r(0) + De(t)) It is a LQTI
circuit system. In this system, g(7)and g,(#) can be changed
independently by the bias and control voltages, from the large
signal point of view. By the same method, using a time varying
inductor and resistor, we can make the inverse of the operator G.
We now consider a circuit consisting of devices which can be
represented by G.
Example 4.1 : LQTI circuit.

Consider the LQTI circuit shown in Fig 4.2. R, R,, C,
constants. In the figure, G, =CG=C(gD+g)), G,=C,G=
C,y(g D+ go) with C,.C; being constants.

Cz are

77777
Fig. 4.2 An example of LQTI circuut.
To pertform the small signal analysis, recall that the operator G
1s linear. By the node analysis, we can obtain the following
relations :
71—-(\11 =v)+CGv, +CG(v, —v)=0
1
C,Gv, + Lv0 =0
R,
By combining, we obtain

v,
- ——C+C G
RR, Rz( GV, -

GG, = GGy, (31)
Rl

Let us take the extended Laplace transform of both sides of Eq.
(31). Then,

s
Fols) _ _ RG
17(s) - ) 1 1 C: 1 (32)
‘ S+ —(t st ——r
R, G, C7 RRC/

This circuit 1s a second order band pass filter in view point of
the sinusoidal signal modulated by g,(1). &/(?) or operator G .
But, the circuit may not be band pass filter when considering in
view point of traditional Laplace transtorm, according to the
£(0). g,(1).
variable s 1s difterent from that of the traditional Laplace
transform. In other words, the complex variable s represents a
function modulated by g(f). g,(f) in time domain. We can
analyze and design the LQTI circuit in this manner.

Although the Kalman filter is a very etficient filtering
technique, there is no modulation (frequency shift) concept. On
the other hand. there 1s a modulation concept in Wiener filter,
which 1s a LTI filter. Therefore, the Wiener flters and
modulation property is used in the present communication
system for the eftective frequency utilization. From this point of
view, we mav comment that LQTI filter and its related systems
can be used for more etlicient communication and trequency

functions The physical meaning of complex
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resource utilization.
5. CONCLUDING REMARKS

The eigenstructure of the LQTT svstem 1s studied along with
extended Laplace transtorm and its various properties. Based on
the eigenstructure of LOTI svstem, 1t 1s possible to develop
various usetul methodologies of analysis and design for LQTI
systems as the eigenstructure of LTI systems induces such
elegant methods in the linear circuit theory, n automatic control,
modulation in communication and spectral analysis of signals.
Also it is shown that the LQTI filter can be analvzed and
designed when the concept of eigenstructure of LQTI system 1s
properly utilized.

In this paper, we have introduced the operator G composed of

a first order derivative and two arbitrary functions. This concept
can be easily generalized. That is, we can define the operator G
as G=g D" +g, D" +.4g,D'+gD +g,, and trom
Gx = Ax , we can develop the theory in a similar manner. In the
case of detining the Extended Laplace transtorm for n-
dimensional operator GG, however, we must construct the n-
dimensional partial differential equation. It is finally noted that
the proposed theory for 4 class of time varying linear systems
can have various applications as indicated in section 1V and in
the robust control of linear time varving systems. Also, 1t 1s
commented that there can be some time varying linear
differential equations which cannot be represented by the linear
combination of operator (G, although any second order linear
time varying ditferential equation can be represented by the
operator G completely.

APPENDIX A.
Proof of Theorem 2.2

Firstly, assume that system matrix .4 of Eq. (7) has the distinct
eigenvalues. Then,

gDy + g = A4y
&by, +g,y, = A4y,

gDy, gy, =4y,

This implies :
g g,
— &
y ()= ]

y(t,), i=12,-.n

That is,
y(1) = QO)v(,)

where

Since GPx=PGx, Eq. (8) is obtamned from the nonsingular
transtormation x=Py and initial conditions.

Secondly, when the Eq. (7) has multiple eigenvalues, it is
obvious that there exists a nonsingular transform / such that
P 'A4P is a Jordan canonical form matrix. Consider the ith block
of PP with cigenvalue 4, with multiplicity m, . Then

[ » v, A 100 o o] ¥
Ve Vi 0 4 1 0 0 Vi
gD + & = :
Viom 2 YViem-2 0 0 0 Ao View 2
Viem 1 Viem-1 o 0 0 O A ] Viema

By solving the above equations, we obtain :
}ﬂld:

.V,,m‘,|(’) =e #
(e

.\.I~”L":(’):e 5

yum—l“ﬂ )

‘1
Broma (1) + ¥y ()] —dlt)
ARy &

12 ]
Yim (D)= 8 (_V,,,,,’,;(l(,)"r‘_v,,m,2(10).[)——6111 +
&

_Vu-m—l(to )J."]—' I'.Ld[jd[})
&g
ﬂﬁld’ 01
W= 1)+ Y () —dt e
] gl

] Lol IS |
_V.w.,fx(’n)‘fuz’l—".uz““_‘.n ;;—]dlm_lmdt:dtl)

[t now follows from Lemma A.1 stated below that the following
relation holds :
M.(8)= 5,(DO, (DM (1,)
where
M@)y=ly Dy ()~ .Vm.vz([)y.-mrl(l)]'

Theretore we can obtain Eq. (10) from the transtormation x=Py
and initial conditions. QED.

Lemma A1 [5] Let £(1) be a integrable tunction. Then we
can obtain the following relation.

1 1 i) ( thl )k
L /)'L g L pdt,---d,dr, = _LF—
k times
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