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Abstract

In this paper, we propose a new method to estimate
robot position without landmark. At first, it is stud-
ied to estimate robot state using Markov decision rule.
And, a matching method is discussed for estimating cur-
rent position more accurately under the estimated cur-
rent state. At second, we combine or fuse the matching
method with the POMDP method in order to estimate
the position under a dynamically changing environment.
Finally we will show that our method can estimate the
position precisely and robustly of which error are not
cumulated through simulation results.

1 Introduction

An accurate position estimation is very important in
area such as mobile robot, especially under unknown
environment. Of course, it has been studied to esti-
mate positions of mobile robot a few decades ago. In
this paper, our aim is to investigate an accurate and
simple positioning method using data from range sen-
sors. We consider an example of a two-wheel driven cart
(of which top view is shown in Figure 1). The cart is
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Figure 1: Top view of a mebile robot

made of three rigid bodies (the cart’s platform and the
two driving wheels), and it is equipped with eight range
sensors and two encoders in its two wheels. It moves
on a horizontal ground. Then, a parameterisation of
the cart’s configuration space is (z,y, 8). In this study,
in order to avoid the complications that would result
from intreducing the mobile robot dynamic equations,
we will consider only that the wheels’ angular velocities
w; and w, can be taken as control variables. By setting
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where v;andv, are left and right wheels’ velocity respec-
tively, and d is radius of wheel. Let consider the fol-
lowing state vector as X(t) = [z(t).y(2),8(t)]" where z
and y are the coordinates of the mobile robot position
in the base frame, and @ is the cart's orientation angle.
We then obtain the following state equation:
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Therefore, the discrete model for robot positioning is as
following:

X =X 4 7AU +n &)

Here, n is random noise. And, assume also that the
internal sensor data are corrupted by additive random

noise as follows:
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where U is the undisturbed data or the true, and 6U*
is the disturbance. Now, we assume a Gaussian distri-
bution for §v*, that is,
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where E[a] denotes the expectation of a, and Q is

the covariance matrix of U’. Substituting Eq.(4) into
Eq.(3), we calculate the mean and the covariance ma-

trix of X1,
E[X']
v [X]

H

X'=E[X"|+7AE[U']
E [(Xl _ XI)(X! _ X"i)t]
VX +7AV U] A + N (6)

Here, 7 is the sampling time of sensors, and A is 3
covariance of random noise n.

Consequently, the positioning error may be very large
and updated always, because the covariance of the po-
sition is increased due to their cumulative effect. The
major errors are generated due to followings:
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¢ Slipping motions of wheels

¢ Resolution of encoder

e Mechanical parameter error

¢ Radius variation of wheel due to load change
» Road condition

In order to prevent the error from being updated, many
researchers has usually used the landmark. We, in this
paper, propose new methods to estimate robot posi-
tion without landmark. At first, it is studied to esti-
mate robot state using Markov decision process. And,
a method is discussed for estimating current position
more accurately under the estimated current state. Fi-
nally we will show that our method can estimate the
position precisely and robustly even though the dynam-
ically changing environment.

2 Mobile Robot Model

In case of utilizing sensor data from only encoders, it
is possible to calculate the position and the orientation
using "dead reckoning method” which has been widely
used. However, its cumulative errors on the robot ori-
entation and position are propagated on all three coor-
dinates. In order to be able to state the problem, it is
necessary to analyze descriptively models of the maobile
robot including internal sensors. When mobile robot
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moves from current subgoal(s;) to next subgoal (s;41),
the robot can be arrived at the subgoal with a prob-
ability (refer Figure 2). From now, we calculate the
probabilities. When we assume that the covariance of
v, is the same as 2,'s, Eq.(6) can be changed:

VU]l = el
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where ¢, = 0, = o,,, | is the distance between both
subgoal, and v is the speed. The sensor data are
corrupted by Gaussian noise, so that we can assume
that X has also a Gaussian distribution with covari-
ance matrix which is given by Eq.(7). The covariance
matrix (V [X;/*']) is not diagonal, but becomes semi-
positive definite because nr’0> AA" is symmetric and
semi-positive definite matrix. Its diagonalization is rep-
resented by

v [xz]
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Here, Xi(j = 1. ,3) are the eigen values and U’ is an
orthogonal matrix of covariance. The scalar variance in
the direction indicated by a column vector of U* is the
eigen value. At least, one of the eigen values is to be
zero because the rank of covariance matrix is not full.
Therefore, let’s set such as follows:
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Therefore, robot location is considered by a position
probability density function as follows:
)

exp [—% ((1)2 A )} (10)
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When a mobile robot moves to the next subgoal S,
from a current location S;, the probability to be able to
arrive at the next subgoal is calculated as followings:

P i =// p(z, y)dzdy (11)
Siv1

where S;.; is the area of next subgeal, and (z,y) is
coodinates of S;.;. And assuming that R is radius of
Si+1. Eq.(11) has a solution, P; .41, which is simplified
as the following:
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Consequently, when a mobile robot moves to a subgoal
from current location, the robot can arrive at the goal
with the probability P;;,; while it can move to the
other point with a probability 1 — P, ;; and stay at
the current location with a probability P; ;. If subgoal
is only one, the robot must be stayed either at the cur-
rent location with a probability P ; or at the goal with
a probability P, ;;,. Therefore, we can figure out the
probability process as Figure 3.

3 Robot state estimation

This section describes a state estimation method
using Partially Observable Markov Decision Processes
(POMDP). POMDP generalize the MDP(Markov Deci-
sion Processes) framework to the case where the agent
must make its decisions in partial ignorance of its cur-
rent situation. We apply the POPDM to estimate a cur-
rent state of mobile robot. In here, the state of robot
means the robot position or current subgoal at which
mobile robot is located. As an example, Figure 4 shows
a small POMDP with 2 states, 2 observations, and 1 ac-
tion. Each probability of state transitions with respect
to the action is that Py = 0.2, Py ; = 0.8,and P, ; = 1.
If the agent knows that it is in sy at time ¢ and then
takes an action and observes 0., it can be certain that
it has remained in 8y. However, if it observes o, it is
possible that it is in either g or s;. Table 1 summarizes
all 4 possible outcomes. These outcomes are mutually
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Figure 4: A POMDP Figure 5: Path expressed

by POMDP
Table 1: Probability of all outcomes

resulting stale | observation | probability of event
3y 01 02x0I1=002
3y 0y 02x09=0.18
81 01 0.8x 1.0=0.80
31 02 0.8 x 0.0 =0.00

exclusive and their total probability becomes to one.
Given that the agent observed o,, the probability that
the state of robot is ¢; is as followings:

P(s1]o1) P(01]31)P(81)/P(01)
0.8/(0.02 +0.8) & 0.976

The probability of being in s, is 0.02/(0.02 x 0.8) =
0.024. Therefore, we can estimate that robot is in s;.
In section 2, we have established a probability model for
mobile robot, that is, a probability of state transition
between subgoals. And, a global path generated by a
global path planmer is usually a sequence of subgoals.
By combining with them, a path for POMDP may be
figured such as Figure 5 if we can obtain the observa-
tion probability in each state from environment model.
And an action, 8;, denotes a command to move from a
subgoal s; to the next subgoal ;.
3.1 Notation for POMDP

A POMDP problem can be defined by a finite set
states, S. a finite set of action, A= {6y,---,6,}, and a
finite set of observations, @ = {01,---,0,}. These sets
are related with the following two functions. The tran-
sition function, 7 : & x A — II (S), defines the effects
of the various actions on the state of the environment.
In here, IT(-) represents the set of discrete probabil-
ity distributions over a given finite set. The notation
7 [s,a,¢] represents the probability that state s’ will
result from taking action a in state s, that is, P(|s, a).
The observation function O : S x A — IT (O) specifies
the observation model. That is, S[¢',a,0] is P(0|¢,a)
which is the probability of observing o in state s’ after
taking action a.
3.2 Estimation for Robot State

We know T (s,a,¢'| from mobile robot model of
Chapter 2, whichis P; ;1. And also. O[¢', @, 0] has been
given because we have already established a database of
environment model. So that. the next state can be es-
timated /computed recursively as follows:

sivn = Maz (b]s)

bls'} = (O

[s’,a,o]ZT[s,a,s’]b[s]) /P (o]b,a) (13)
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The denominator makes the total probability of the re-
sulting belief state normalized to one.

Polb,a) Z P(d,0lb,a,)

s'€S

2

s'eS

(0 [¢,a,0] Z T [s,a,5']b [s]) (14)
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In here, b [s] is a belief state which is a representation of
the mobile robot’s current state given its past history of
actions and observations. In other word, b s represents
the probability that the current state is s € S. By the
definition of the probability distributions, b{s] > 0 for
all s € S, and 3 b[s] = 1. For the agent to keep its
belief state up to date by Eq.(13). it must start with a
known belief state. That is, it must have some initial
probability distribution, by. We set always the initial
belief state b[s¢] = 1, where sy is a start state (start
point) of mobile robot path.

3.3 Case study

For an example, let’s consider the simple environment
of Figure 6. Figure 7 shows the results of extracting sub-
goals by quadtree decomposition method. Assume that
mobile robot has four sensor units: oy, 01, 09, and o,
are sensor units of front, left, rear, and right side on
mobile robot, respectively. And, assume that the prob-
ability of sensing object’s existence, when there is an
object at the sensor direction, is 0.9 under considering
noise, and that the path is generated such as a sequence
of ”80 -+ 8 —+ 815 —* 8 —* 811’. (refer to Figure
7. Table 2 shows observations at each state whenever
robot moves about a discrete grid by executing an ac-
tion which is @¢g: move the next subgoal, ¢;: turn
right, a.: turn left, or a;: stop. The number of
the Table 2 denotes probability which each sensor unit
senses/detects an object. Estimate robot states using
Eq.(13) and Eq.(14).

At first, we need to compute 7 [s,a, s'] from mobile
robot model! of section 2 under assumption that the mo-
bile robot can move two states for one action: For an
example, if the mobile robot performs ay at s, it is
probable to move to s, or s, or to stay in s.

T[s,a,8] = P(s']|s,a). a€ {ag.a1,a2}

® aqg for sg — 87 — 89 — 83 — 34

Pi,i+1
2

(-nl-£)

P (si41]9i,a0)

P(si|si,a0) = P(sit2]8i,09) = Pi;
= 1-PF i41/2
® 1y in 85
1 R?
P(ssl85.00) = - (1 —ezp [—r‘z )
P(s5ls5.00) = P (sq|s5.00) = P (s12]83,00)
= 1-Pin/3



¢ And the other states have the same processes as
the above one, including the follows:

it

P (si]si,a1)
P (si}si,a2)

(15)
At second, we also need to calculate O [s', a,0].
0O[s',a,0] P(ol¢',a)

Events which is for each semnsor unit to detect ob-
ject depend on environment and its state, but recip-
rocally independent. In other word, the observations
from sensor units are mutually independent. Therefore,
P(Oo, 01,02) = P(Oo)P(Ol)P(Og)P(Og). After acting aq
at Sy,

¢ If only 0, was observed,

P(o]s5.a)=(1-0.1) x (1 - 0.9) x 0.9 x (1 - 0.9)
P(o]sg,a0)=(1-0.1) x (1 - 0.1) x 0.9 x (1 - 0.1)
P(o]sr.a0)= (1 = 0.1) x (1= 0.9) x 0.9 x (1 - 0.9)

) ( ( )

P(o]s12,80)=(1=0.1) x (1-0.9) x 0.9 x (1 - 0.9

e If 0; and 0, were observed,

P(o]ss, 201 — 0.1) x 0.9 x 0.9 x (1 - 0.9)
P(o]sg,apH1-0.1) x 0.1 x 0.9 x (1 -0.1)
P(o)s7,a91 —0.1) x 0.9 x 0.9 x (1L - 0.9)
P(o]s12,a0%1-0.1) x 0.9 x 0.9 x (1 -0.9)

e The other cases compute such as the same as the
above.
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Figure 6: Environment for Figure 7: Robot path for
case study case study

4 Position Estimation under Known

Environment

The position of wheel-type mobile robot on the
flat surface in the time step k can be presented as
P(xr,yx 0i), relative to a global coordinate system.
Here, 6, is the robot’s orientation. It is possible to
calculate not only the position, but also the orientation
using "dead reckoning method” which has been widely
used. But it has several problems, such as large estima-
tion errors and their update. In this section, our aim
is to investigate of an accurate and simple positioning
method using data from ultra-sonic sensors.

At first, we assume that there are some objects in
known environment as (Figure 8), and that surface
equations of the objects can be given as Eq.(16).

fr: akz'g‘ + bky;,c =i (16)
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Table 2: Probability of observation and action at all
states

current state | action | observalion

0o 01 02 03
S a9 0I 09 01 09
81 ay 0.1 09 01 09
e I 0.1 09 01 09
83 ay 0.1 09 01 09
84 ay 01 09 01 09
85 i 0.1 069 01 09
3 a) 61 09 0.1 01
8g Qq 01 01 09 01
812 ay 0.1 09 01 09
813 Q9 0.1 09 01 09
$14 2 05 09 0.1 09
815 as 09 01 09 09
815 as 01 09 09 09
815 @y 0.1 08 09 09
814 ay 0.1 09 09 01
813 ay 01 09 09 0.1
812 aq 0.1 09 09 0.1
8¢ a 0.9 01 0.1 0.1
86 ay 0.1 09 01 0.1
87 ay 0.1 09 01 09
83 ag 0.1 09 01 09
89 ay 01 09 01 09
810 Qq 05 09 01 09
811 a3 09 09 0.1 09

Here, the subscript gof x ’g‘ represents global coordinates.
Now, when distance between a object (object;) and a
sensor (sense;) is measured as [; ;, it is able to calculate
51m ly the ob]ect s posmon on robot coordinate, such

rZjr i j cos(f sin(f:)). Matching the
obtamed oi)]ect s posmons w1tf1 the given equations, we
can estimate a robot position, that is to find out a trans-
formation matrix of robot coordinates for the sensed ob-
ject’s positions to be located on the object surface. In
other words, the robot position (transformation matrix
of robot coordinate) can be calculated minimizing the
shortest distance between the measured point P and
the object surface as followings:

FI;) = lep By
_ Z I(a.,v.R,‘x,»j» £) — ekl (17)
[l il
Here,
R Ry t,
R t
T = [ }: Rsy Ry
! 0 1 o o 1

where ,Z; = (,2i,,¥:)" is measured, and d; = (a;,b;)'
is given as environment parameters. R is orthogo-
nal matrix, and (,)is inner product operator. By the
way, minimization of F(I}) is the same as minimizing

> ﬁ"—'—’%%,h)-‘ therefore, Eq.(17) becomes to be a

i=1



optimization problem as following:

minimize  3(0) = 0QO' - 20Q
constraints  RR' = I,det(R) =1 (18)
Here,
© = (Ru,Ris Ry, Ros,ty,ty)
. n QtQ‘
Q = 1
,; lla:(®
k21 fi
N ‘C;
Q = T
; ll:11®
Qi = (aizi,a:yi,bizi biyi ai,b;) (19)

In Eq.(19), © can be represented as function of p =

Figure 8: Sensing robot position

(0,t.,t,)" which @ is a direction angle of robot. For
eliminating the constraint condition, the parameter ©
is converted with p. And then, we calculate the gradient
vector g and update the Hessian matrix of the index
function ®(p) to obtain the second-order approximation
to the objective function ®(p) and to solve the function
iteratively. The iterative solution and the Hessian ma-
trix is updated as follows:

ép = Px—Pr—1
1
Hy, — ———Hbpbp'H
Hy k 6pr§pH6p6p
Pre1 = Dx + Hibp(trace(6'Q)) (20)

Consequently, a current position and orientation of mo-
bile robot is obtained optimally by matching the sensed
data with environment data.

4.1 Simulation Results

Mobile robot move origin point to final place through
middle gates(P1,P2) - here. origin point is (0,0), final
place is (85,85), and middle points are P1(15,15) and
P2(85,15), where the units of numbers are 0.1 meter.
At first, we tested dead-reckoning method on this envi-
ronment. The results are shown at Figure 9, that is, the
solid line is the actual position and the dotted line repre-
sents the estimated position by dead-reckoning method.
It shows that the position error to be updated and very
large and that, especially, position errors are affected by
the orientation error seriously.

At second stage, we apply dead-reckoning until robot
will arrive at the point P2 and then, the proposed prob-
abilistic method is used at P2 for robot positioning be-
cause of being able to apply the method after detecting
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environment features such as corner points, that is, ref-
erence points. After sensing edges and corner point,
Under the above situation, our least square method is
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Figure 9: Positioning by Figure 10: Least square
dead-reckoning method  under known environment

applied at P2. The results is better than the probabilis-
tic approach, for example, the estimated coordinates
is (85,14.03). And we apply our iterative method at
P2 under same condition, the estimated coordinates is
(85,14.1). As shown in Figure 10, our approach made
the estimated path very accuracy even if applied only
one time.

5 Position Estimation under Partially

Known Environment
The proposed methods of Section 4 have some prob-
lems such as follows:

¢ Complex environment can have similar points t0o
many to have only one optimal solution.

¢ It is necessary to know perfectly the environment.

s So that, the methods dor’t deal with partially
known or dynamically changing environment.

¢ How to deal with the problem of case that ultra-
sonic sensor failed or missed to sense objects be-
cause the sensor can measure only objects perpen-
dicular to the beam,

e The methods require three observations at jeast for
having one solution.

From now, let’s solve the above problems by combining
the position estimation method with robot state esti-
mation method (POMDP). In order to solve the first
problem, we apply the position estimation methods un-
der a constraint, that is, robot position is within the re-
gion of the current state which is computed by POMDP.
The second and the third problems can be also solved
ignoring the unknown object, that is, we deal with only
objects which there can be in the current state esti-
mated from POMDP. So that, the unknown objects are
rejected from the sensed data. In fourth and fifth prob-
lem, our proposed methods have a number of solution
when outer product of the measured vectors is zero %
+3i X o Z; = 0, refer to Eq.(l7I)), or when the number o

measured data is only one. In the case, we determine
the position as following equation:

Min|ltx — Cx|| (21)
X



where tx, (t.1,), is a vector with two elements of p in

Eq.(20) and Cx is a vector from origin coordinate to a
center coordinate of current state.

6 Simulation Results and Discussion

Under an environment of Figure 6, we simulate
the proposed method, combining or fusing the match-
ing method with the POMDP method. Firstly dead-
reckoning method is applied between a current subgoal
and the next subgoal until robot arrives at the next
subgoal and estimates the current position.

In Figure 11, the dotted line represents the actual
path of mobile robot, and the dotted line is the esti-
mated position. It shows that the estimated errors are
not updated.

In Figure 12, we simulate how the estimation operate
under environment in where obstacle exists. Firstly, our
POMDP estimates the state of robot and detects the un-
expected obstacle. Therefore, the information obtained
from the obstacle is rejected. and then the method for
positioning applied. So that, Our method can estimate
robustly the robot position without depending upon the
existence of obstacle.

Figure 13 represents a weak point of our method.
That is, when an obstacle is located on the same direc-
tion with the known object, the POMDP can not recog-
nize if the obstacle is a known or unknown. so that our
method looks on the obstacle as the known and occurs
the estimated error bigger than dead reckoning method.
However, the error is also reduced only when the obsta-
cle disappears.

Consequently we can assert that our method estimate
the position of mobhile robot precisely and also robustly
even if an environment is changed slightly.

oy
Fiie Simad

Figure 11: Estimated po-
sition of Case study

Figure 12: Obstacle 1

7 Conclusion

We have proposed, studied and simulated the robot
positioning methods, which are not updated and not
so large. Also, by detecting features of real world and
using them instead of land-marks, we showed to be able
to estimate the position of mobile robot precisely, and
also shewed the robustness with respect to the change
of environment.
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