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Abstract

By far the PID controller is most widely used in the process industries. However, current tuning methods yield PID
parameters only for a restricted class of process models. There is no general methodology of PID controller tuning
for arbitrary process models. In this paper, we generalize the IMC-PID approach and obtain the PID parameters for
general models by approximating the ideal controller with a Maclaurin series. Further, the PID controller tuned by
the proposed PID tuning method gave more closer closed-loop response to the desired response than those tuned by

other tuning methods.
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INTRODUCTION

Because the PID controller finds wide spread use in
the process industries, a great deal of effort has been
directed at finding the best choices for the controller
gain, integral and derivative time constants for
various process models (Ziegler and Nichols, 1953;
Lopez et al., 1967; Smith et al., 1975; Rivera et al.,
1986; Chien and Fruehauf, 1990 ). Among the
performance criteria used for PID controller
parameter tuning, the criterion to keep the controlled
variable response close to the desired closed-loop
response has gained widespread acceptance in the
chemical process industries because of its simplicity,
robustness, and successful practical applications. The
IMC-PID tuning method (Rivera, et al., 1986; Morari,
et al.,, 1989) and the direct synthesis method (Smith,
et al, 1975) are typical of the tuning methods based on
achieving a desired loop response. They obtain the
PID controller parameters by first computing the
controller which gives the desired closed loop
response. Generally, this controller is rather more
complicated than a PID controller. However, by
clever approximations of the process model, the
controller form can be reduced to that of a PID
controller, or a PID controller cascaded with a first
order lag. An important advantage of such methods is
that the closed loop time constant, which is the same
as the IMC filter time constant, provides a convenient
tuning parameter to adjust the speed and robustness of
the closed-loop system. Intuitively, one would expect
that as the desired closed loop time constant increases,
the PID controller gain and derivative time constants

29

would decrease. The PID controller gain does indeed
behave as expected. However, current tuning methods
yield derivative and integral time constants that are
independent of the closed loop time constant. Also,
current tuning methods yield PID parameters only for
a restricted class of process models. There is no
general methodology for arbitrary process models.

In this paper, we generalize the IMC-PID approach
and obtain the PID parameters for general models by
approximating the ideal controller with a Maclaurin
series in the Laplace variable. It turns out that the PID
parameters so obtained provide somewhat better
closed loop responses than those obtained previously.
Further, all of the PID parameters depend on the
desired closed loop time constant in a manner
consistent with engineering intuition. Several
examples are provided to demonstrate the method and
to compare results with alternate tuning methods.

DEVELOPMENT OF THE GENERAL TUNING
ALGORITHM FOR PID CONTROLLERS

Single Degree of Freedom Controllers ( g, and G, =
1 in figure (1))
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Figure 1. Block diagram of a feedback control system.



Consider stable (i.e. no right half plane poles) process
models of the form:
G(s) = pn(s)p4(s) (D
where:  p,(s) = The portion of the model inverted
by the controller

p4(s) = The portion of the model not
inverted by the controller

P4 (0)=1.
Often, the portion of the model not inverted by the
controller is chosen to be all pass (i.e. of the form
: H(— s 1)[ 7 5: S 20458 * ’}:_ ) since this

s+ 1 J\ris? £ 20,8 s + 1

r,t;, >0 0 < ¢, <1
choice gives the best least squares response. The
requirement that p4 (0) =1 is necessary for the
controlled variable to track its set point.
Our aim is to choose the controller, G, of figure | to
give the desired closed loop response, C/R of :
c_ r9_ @)
R (As+ 1)’
The term 1/(As + 1)" Functions as a filter with an
adjustable time constant, A, and an order r chosen so
that the controller G is realizable.
The controller G that yields the desired loop
response is given by:

i

Po(s)
q m

(1= Ga)  (as+1)7 - P (s)

where q = the IMC controller = p-'(s) /(4 s + 1)’
The controller G; can be approximated by a PID
controller by first noting that it can be expressed as:
G = 1(s)/s @
because p,(0) is one, and, therefore, at the origin, (i.e.
ats=0), (1-P,(0)=0

Expanding G¢(s) in a Maclaurin series in s gives:

Gefs) = Lireoy+ ros+ L1050 (5)

The first three terms of the above expansion can be
interpreted as the ideal PID controller given by:

G.(s)= (3)

Gof(s) = Ko+ ! -+ Tps+ ) (6)
T].\
where k. = 7'(0) (7a)
T, = £'(0)/ f(0) (7b)
Ty o= f(0)7 2 (D) (7¢)

In order to evaluate the PID controller parameters
given by 7a-c, we let

D(s) = ((e5+1) = pL(s)/s (8a)
Then by Maclaurin series expansion we get :

D0)=re- p',(0) (8b)

D)= (r(r—1)&’ —p "' (0))/2 (8¢)

D(O)=(r(r— 1)(r~2)g’ —p, (073 (8d)

Using (8), the function f(s) and its first and second
derivatives, all evaluated at the origin, are given by:

(9a)

0) =
0= g b
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(9b)

AP (0)D(0)+ K ;D (0)

2
(K pD(0))

fro)=

[ P (@D + 29 O @ + K, D)
£1(0) = £ O ( .
L P (@ DO) + K,D'(0)

1 (9¢)
1

) +2£(0) / f(0)

where K, = p(0) = G(0)

The above formulas can be used to obtain the
controller gain, and integral and derivative time
constants as analytical functions of the process model
parameters and the closed loop time constant, A, as is
done in the next section for several examples.
The derivative and/or integral time constants
computed from (7) can be negative for some process
models independent of the choice of the closed loop
time constant, A. If negative derivative or integral
time constants are encountered, we recommend
replacing the simple PID controller with a PID
controller cascaded with a first or second order lag of
the form 1/{(as + 1) or l/('gzsZ + Bys + 1)
respectively. To obtain a PID controller cascaded by a
first order lag (i.e. Ko(1+1/5 st 1p8)/(as+l)), we
rewrite G .(s)as:
1 (f(s) h(s)
K h(s)
where A(s) =1 + as
Now, we expand the quantity f(s)A(s) in a Maclaurin
series about the origin and choose the parameter o so
that the third order term in the expansion becomes
zero. The expansion of (10) then becomes :

G(s) = l:f(s): (10)

G O=(OH/O+af Qs+ O+2f O)' 12+ O+3f ' O)*+..)/ s(os-+])

(11)
Selecting the lag parameter, « ,to drop the third order
term gives:

a = — f""(0)/3f'(0) (12a)
and the PID parameters are:

Ke =f10) + of(0); 7 = K /f(0)

o = (0 +2af (0)/2K) ; (12b)

Again, the PIDelag controller is:

ps)/(as+1))

To obtain a PID controller cascaded with a second

order lag, we write G(s) from (3) as:
-~ N(s)

Gelo) = sD(s)

where N(s) and D(s) are polynomials obtained by

substituting high order (= 4) Padé approximations for

the exponential terms in p,,(s) and p,(s). This gives:

(14)

K (1+V/7 s+

(13)

kKOS g's * 1)

Goe(s) = o
sy gea)s’ + 1)
where o ., g. (1) 2 0 and Bj(A), k(R) are

functions of A



Dropping terms higher than second order in the
numerator and higher than third order in the
denominator gives:
KA (a8 +as+ 1)
5 (B + B(Ds + D)
The controller given by (15) can be viewed as an ideal
PID controller cascaded with a second order lag or as a

(15)

Gos) =

floating integral controller cascaded with a second order

lead-lag transfer function. The controller parameters
are: K. =k(1)-7,; 7, =a,; 7, =a,/r,. The second
order lag is given by (1/(B,s* + B,s +1). All of the
parameters except possibly K are positive.

EXAMPLES
First Order plus Dead Time Model

The most commonly used approximate model for
chemical processes is the first order plus dead time
model given below:
Ke %
s + 1
Specifying a desired closed loop response of the form
C/R = ¢*/(As+1) evaluating the PID parameters from
(7), (8), and (9) gives:

G(s) = (20)

K. = —Fo 0> L A
¢ ! 2(4 + 8)

K(4 + 0)
2n

R 6
T, —
2(A + 8) ir,

Notice, that as the desired loop time constant, A, gets
large, the controller integral time constant, T,
approaches the process model time constant,t, and the
controller gain, K, and derivative time constant both
approach zero. Thus the PID controller goes smoothly
into a PI controller as the desired speed of response
decreases.

Figure 2 compares the integral of the squared error for
step set point changes using the tuning rule given by
(21) with those given by Rivera et al(1986) for
varying process dead time to time constant ratios and

A chosenas A /68 =1/3.
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Figure 2. Comparison of the ISE generated by
various tuning rules.
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To obtain a fair comparison, the same value of A was
used for each tuning rule. The proposed tuning is
superior throughout.

Second-Order Plus Dead Time Model

For a process of the form given by (22) below, and a
desired closed loop response of
C/R = e®/(As+1)? evaluating (7), (8), and (9) gives
the PID parameters shown in (23) below (after some
tedious algebra).

G = . Ke % T C’ > 0
(r°s° +24rs+1)
(22)
Ke = 1,/(K2\ + 8)) (23a)
T, =287 - (247 - O))/(2(2\ + 6)) (23b)
T = T;- 28T + (v8 - 8%/(6(2A + 8))/1, (23¢)

For process models of the form Ke®/((t,;s + 1) (1,5 +
1)), simply replace 2£t and 1° in (23) with 1, + 1, and
T,1,, respectively. For comparison, the tuning rule of
Smith et al, (1975) is also shown in Table 1.

Table 1. Various tuning rules to give the desired
closed-loop response

Process Tuning
Model Method K(' Ty T, Ty
Rivera et 1 240 0 (4
al. K2AA+6) g 27+ 8
FOPDT Rivera et 2r+8 ] 6 A9
al.  (with | 2K(4+0) Tr3 20+ 0 2AA+0)
Filter)
Proposed 7 ¢ ¢ @
KA+ a0 ol
Smith T
xa+e |7
FOPDT Rivera et 2t + O 2]
T+
al 2K4 2
Improved
IMC-PI
Proposed T, &
T+
K(4+6) 2A2+0)
SOPDT Smith n+n 77
n+n
K(A+6) T, + T,
Proposed T, 22 ’ a4
27~ 52T — )/
K2i+6) 204+ | 7 Qg
] c ~ds _
Note : Desired Closed-Loop Response & _€ ,r=1or2
R As+1

Figure 3 compares the closed-loop responses by
several tuning methods for the process given by (22)
with T =10 and { = 1. The resulting PID controller by
the proposed method performs better than the
controller tuned by the Smith method.

The superior performance of the proposed method is
readily apparent.
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Figure 3. Closed-loop responses to a unit step

change in set-point for Gls) = e ;A =15
T (10s+1)(10s+1)

As stated previously, the derivative and/or integral
time constants computed (7), (8), and (9) can be
negative for some process models independent of the
choice of filter time constant. This often occurs when
the process model has one or more dominant lead
time constants as for example the process given by:

N s+ 25 + 25
P(s)=— 3 > (243)
T+ 6557 + 1557 + 45+ 4
0625 (465 + 1) (5365 + 1) (24b)

(2s + 1)(5s + 1)

The open loop response of the above process to a unit
step change in control effort is given in figure 6.
Notice the very large overshoot of the final steady
state caused by the strong lead action of the term
(7.46s + 1) in the numerator of (24b). Using (7). (8).
and (9) to compute PID parameters with a filter time
constant of .2 yields a PID controller with
T, = - 4.60 and 1, = -7.87. On the other hand, using
(12), (8), and (9) gives:
40(1.19s% + 2.86s + 1)

s(747s + 1)
Notice, that the lag time constant in (25) is nearly the
same as the large lead time constant in the process
model. Indeed, very nearly the same controller would
have been obtained by finding the PID controller for
the process given by (24b), but with the lead
removed. However, to obtain this controller it is
necessary to use a second order filter with a time
constant of 0.2 to make the controller proper.
The PID controller with a second order lag seems
most useful when the process model has a strong
second order lead with complex zeros. For example,
consider the process given by:
5(16s? + 4s + 1)
(2s + 1) (5s + 1)
Using a filter time constant of 0.5 yields an integral
time constant of 2.85 and a derivative time constant
of -4.98. The lag time constant computed from (12a)
is -2.75, and so the controller given by (12¢) also can
not be used. Finally, the controller given by (15) for
a filter time constant of 0.5 is:

(25)

PID - lag =

(26)

p(s) =
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_ 2(375s + 355 + 1)
T s(161s? + 655 + 1)
Notice that the denominator lag of (27) is very close
to the numerator lead in the process model given by
(26). Here again, if one eliminates the numerator
term, (16s*> + 4s + 1), from the process model,
computes the PID controller for the reduced model
and then adds back into the controller a lag to cancel
the numerator term, the result is:
2(294s% + 3255 + 1)
s(16s* + 4s + 1)

The control system response using (28) is very similar
to that using (27), and both yield excellent
approximations to the desired closed loop response of
1/(.5%s+1)%

PID - lag 27

PID - lag = (28)

CONCLUSIONS

A new PID controller tuning method for processes
with time delay was proposed in this paper. The PID
controller tuned by the proposed method gave more
closer closed-loop response to the desired response
than those tuned by other tuning methods. Tuning
rules for various process models were developed.
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