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Abstract The paper highlights the need for cautious least squares estimation when dealing with industrial applications of bilinear self-
tuning control and indicates in qualitative terms the benefits of the approach over linear self-tuning control schemes. The cautious least
squares algorithm is described and the use of cautious self-tuning in the context of both commissioning and implementation discussed.
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1. INTRODUCTION

Controllers that are based on conventional three term
proportional, integral, derivative (PID) approaches are often
found to be adequate for many industrial systems. However,
with increasing demands for improved plant efficiency and
overall system performance such schemes are frequently required
to be continually re-tuned for each operating point. This is a
time consuming task which neither guarantees optimality or
repeatability. Consequently, alternative, schemes, termed self-
tuning controllers (STC), have emerged which offer both
facilities for automatic tuning of controller gains and the
flexibility to realise a wide variety of control law objectives,
from simple PID to multivariable generalised predictive control.
In principle STC is a conceptually simple and straightforward
approach which may be characterised by two coupled sub-
algorithms; one for on-line parameter estimation and the other for
control implementation. Fundamental to all forms of STC is the
need to update a mathematical model representation of the plant
and the integrity of this common element is a major contributory
factor in determining the overall effectiveness of a particular STC
scheme. A good summary of the developments in self-tuning
control is given in the texts [12,19].

When attempting to apply STC to non-linear industrial systems
it is common to find, in all but the simplest of cases, that
standard techniques based on linear model structures produce
performances that are inferior to conventional PID schemes. In
an attempt to improve overall performance non-linear model
structures have been considered, with particular attention on
bilinear model structures; such models being representative of a
wide range of industrial processes and plant {2,15].

2. CAUTIOUS LEAST SQUARES APPROACH

A single-input single-output (SISO) discrete time bilinear
model, which has been used for applications such as high
temperature furnaces, fermentation processes, waste water
treatment and non-linear valve characteristics, is adopted as a
basis for introducing the cautious least squares methodology. It
takes the form of the non-linear auto-regressive moving average
extended (NARMAX) model representation
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where the polynomials A(q™") and B(q™!) are defined by the
general polynomial

2N =8, + g7+ 0,g7F+

with a;=1, by#0 and v(t)=e(t)+d(); u(t), y(t), e(t), ¥(t), and

d(t) being the input, output, white noise output disturbance, noise
free output and local offset sequences respectively, k=1
represents the system dead time expressed as an integer multiple
of the sampling interval and q7' is the backward shift operator

defined as q7'y(t) a y(t—i).

In bilinear STC algorithms the coefficients of both the linear
and bilinear terms are recursively estimated in order to update the
coefficients in the NARMAX model (1) which is used in the
controller update stage. In order to estimate the #; it is necessary

to generate an estimate of the noise free output ¥(t). This is

achieved using a steady-state Kalman filter scheme via use of the
equivalent state space representation of (1)

x(t+1) = Px(t) + Qu(t) + Rv(t)
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y(®) = Hx(t) + v(t) (2b)

where x(t) eRY |, N = n; + k with n; = max(n,,n,) and the
matrices P, Q, R, Hand N;, i = 1,2,...,m, are initially given in
the implicit delay observable canonical form [4].

Rearranging the state equation 2(a), absorbing the bilinear
terms, leads to a time-step quasi-linear state equation which is

used to generate the estimated state vector X(t). Eliminating the

noise term, by substituting the output equation (2b) into the quasi-
linear state equation, leads to the iterated steady-state observer
(ds0)
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which is essentially an extension of the steady-state Kalman filter
proposed in [18], where
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The estimate of the noise free output y(t) is then given

by X%,(t) the nth element of the estimated state vector X(t)

Rearranging (1) leads to
y@® = z'(H0® + @)

where z € RP is the observation vector

2'®) = [ —yt—1) ... —y(t—n); u@—k) ... ut—k—ny);
% t—kut—k—m+1) ... X t—k—nu(t—k—n,—m+1); 1]
and © ¢ RP is the parameter vector
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with & being an estimate of the offset term, and {(t) is a sequence
of residuals (comprising errors due to both measurement and
estimation) which becomes equal to the noise sequence e(t) upon
convergence. The standard recursive least squares (RLS)
algorithm, based on minimising the cost function

3, ©®=0-Z0)TAGY-Z26) ®

for generating the parameter estimates (1) of the bilinear

system is identical to RLS algorithm for a linear system, with the
observation vector being appropriately extended in order to
accommodate the additional multiplicative terms. In (5)

I

yO = y(1) y@) ... yOI', Z® = [z(D), zQ), ... , z®]"

and A diag O\ A7 ... A% N), where A < 1 is a specified
forgetting factor allowing the user to place greater emphasis on
more recent observations. The value of the forgetting factor can
also be varied or regulated with time and this will give rise to
increased adaptivity of the STC scheme. The resulting algorithm
is given by

6@ = 6t—1) + o [ y® — 2'®OC-11  (6a)
where o) = -1 z@®) [1 + zT(t) &t-1) z@®) 1 (6b)
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with I, ¢(t), ®(t), A({t) and ¥ being the identity matrix, gain
vector, error covariance matrix [ZT A Z]™!, variable forgetting
factor and process noise covariance matrix respectively.

Since ® stores information regarding parameter variation the
introduction of ¥ in (6¢c) enables additional ‘engineering
knowledge’ to be incorporated within the covariance matrix
update equation. This being similar to the covariance update of

a Kalman filter configured for parameter estimation, where the
diagonal and off-diagonal elements of ¥ reflect the expected
variation of individual parameter values and the expected cross-
correlations between the parameter values respectively [16].
These elements are best determined from practical experience
with the plant; however, a good ‘rule of thumb’ for tracking
purposes suggest that the diagonal elements should range from
0.001 to 0.1 for the case of slow to rapid tracking respectively.
The off-diagonal elements, which correspond to the sympathetic
behaviour of the parameters, are set according to any knowledge
of likely correlation, with values in the range +0.001 to +£0.01
indicating weak to strong correlation. Such an approach does
require experience with the plant and judicious tailoring and
tuning of the elements to obtain the ‘best’ performance.
Consequently, an Adaptive Kalman Filter (AKF) has been
developed [14] which is able to automatically adjust the diagonal
elements of ¥ on-line as the estimation algorithm evolves. The
AKF is, however, unable to adjust the off-diagonal elements;
these being preset manually as previously described. Another
feature of the RLS algorithm (6) is that it provides its own error
analysis with the variance of the error of the individual parameter
estimates being indicated by the corresponding diagonal elements
of the matrix &, which by definition are required to be positive
quantities. The extension of the RLS algorithm to incorporate the
bilinear coefficients n; can lead to greater correlation in the
parameter estimates and giving rise potentially to biased
estimates. Whilst this may not be a problem in implementing
STC, it can lead to errors in model based predictions when.used
in conjunction with predictive STCs. In order to overcome this
potential problem cautious least squares (CLS) has been
introduced [3,5].

Essentially, CLS enables the designer to influence the
estimation algorithm through a practical knowledge of the system.
Caution is incorporated into the estimation algorithm via a simple
modification of the standard RLS cost function J; in (5), giving
the modified cost function

J(©) =J +1,;J,=(0 - 6)1(6 - 8) M
in which the additional or ‘cautious term’ attempts to minimize

the deviation of the estimated parameter vector (1), generated

from the standard RLS algorithm (5), from some pre-specified
‘safe set’ of parameter values O,; this safe set being identified
off-line from input/output time series analysis or from a practical

knowledge of the system. The parameter vector €(t) which
minimises the modified cost function J.(©) of (7) is called the
cautious parameter vector. It is given by

6@ = 70 + 117" [#7' 6() + O] ®
Since a recursive solution of (8) is not immediate, the approach

is realised as a tandem operation of two separate procedures.

First é(t) is obtained using the RLS algorithm (6) to minimize

], only, followed by the determination of @ from CLS by

minimizing J, only, which involves a further p iterations of the

algorithm. For clarity, it is convenient to assume that whilst time

is ‘frozen’ between successive iterations of the RLS algorithm the

discrete time index t is replaced by the index j, where j = 1,2,
., p. The sequential CLS algorithm then takes the form
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6,=6,_, +¢ [0 -6,)] (9a)
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where the ¢ are the orthogonal unit vectors defined by
ey = [ 88y 85 ... 6] (9d)

in which §; is the Kronecker delta function.
The additional CLS algorithm is initiated at each time step,

following each iteration of RLS, with 6, = 6t and ¥, =

&(t), where é(t) and &(t) are respectively the estimated
parameter vector and covariance matrix generated from RLS.
Following the p additional iterations of CLS, the cautious

parameter estimate and covariance matrix become oM = o,

and &) = &, respectively, with the cautious parameter

P

vector O(t) being used for control purposes within the overall

STC. Atthe nexttime step ©(t) and &(t) are fed back to the
RLS algorithm such that

O(t—1) = Ot) and Bt — 1) = &(t) respectively.

Note that the ‘artificial data’ in the form of the orthogonal unit
vectors (9d) provides an artificial excitation signal within the
estimation algorithm; thus to some extent alleviating the potential
problems of covariance blow-up [1] during steady state periods
of operation, without the need to disturb/perturb the plant.

3. PRACTICAL IMPLEMENTATION

Within the Research Centre at Coventry STC has been applied
to a wide range of industrial processes and plant, including rotary
hydraulic systems [10]}, engine testing dynamometers [13], gas
engines [17] and high temperature furnace applications [7,9].

Experiences with the implementation of STC has revealed that
linear STC often struggles to match the performance of a well
tuned industry standard PID scheme. One of the major problems
of a conventional STC lies in the inevitable plant/model mismatch
which occurs when use is made of linear model structures.
Indeed it is recognition of this fundamental shortfall of the linear
approach that prompted the study into bilinear forms of model
based STC. An unfortunate consequence of a linear STC is that
the parameters of the assumed linear model necessarily vary
widely as the model attempts to replicate the plant. By adopting
a bilinear model structure, it is found that variations in the model
parameters are significantly reduced, thereby effectively
removing the need for enhanced estimation techniques, such as
use of forgetting factors, etc. A distinct advantage of the reduced
variation in the parameters is that the estimation algorithm can be
constrained to limit the amount of parameter variation allowed.
This leads to an overall robust STC scheme in which model
uncertainties are accommodated within the allowable parameter
variation.

Since it exhibits most of the nonlinearities that are commonly
experienced with industrial plant, the high temperature furnace is

considered here to describe some of the problems that may be
encountered when applying STC in practice. For example, such
a plant is predominantly first order having input dependent steady
state gain and dynamic response characteristics. In particular,
with increased input, in terms of gas valve position, the system
gain decreases and the speed of response become faster; such a
characteristic being typical of a bilinear system. Since the
nominal time constant and steady state gain are known, it is
possible to obtain a nominal safe set for the model parameters ©,.
When use is made of a linear model structure

y® = —ay(t—1) + bu(—1)

it is found that the model parameters can vary significantly.
However, when use is made of a bilinear model structure

y® = —ay(t—1) + beu(t—1) + nut—-Dy{—1)

then it is found that the model parameter variation is considerably
reduced.

The introduction of CLS allows constraints to be placed on the
estimated model parameter values, thus leading to an overall
practical realisable self-tuning algorithm. Whilst in principle
CLS may be applied sequentially at each time step, this may lead
to superfluous computation and alternative methods of
implementation have been devised. One method, which exploits
the diagonal form of the covariance matrix upon reset is to
combine CLS with covariance matrix reset. This has the
advantage of cautioning all parameter estimates simultaneously.
However, it may be undesirable to make use of resetting
techniques under certain situations, and CLS may be applied
cyclically. In this way each individual element of the parameter
vector is cautioned every (p—1) iterations of the RLS algorithm.

It has been found from experience [11], that it is better to
apply caution as an event driven procedure rather than on a
regular basis and in this respect it is useful to define a safe region
about the safe set, such that

0c{06,+tw}

where { o +tw } denotes the safe region
{e:0 —w<6<0 +w,i=12 ...,p }

and w = [ 48, 26, ... 48,]", with 46, being the specified

variation about the safe set parameter value O,.

Following each successive iteration of RLS, the additional
CLS algorithm is activated, by applying caution to individual
elements should they reside outside this safe region; that is

it & ¢ {6,tw}
then CLS is not applied

whist it & & {6, £w}

then CLS is applied to the violating elements.

Using such an approach, there is a minimum of additional
computation and CLS is active only when necessary.

In addition to overcoming the problem of bias, that may arise
in the presence of weakly correlated entries in the observation
vector, other advantages of CLS include:
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» prevention of the occurrence of covariance matrix blow up
due to the estimator ‘falling-to-sleep’; this being achieved by
effectively keeping the algorithm alert without disturbing the
plant

o commissioning of the self-tuning algorithm; this being
achieved by constraining the estimated parameter values to
belong to a region which defines a ‘sensible’ and stable
system

« fault detection; this being achieved by monitoring the number
of occurrences that a given parameter value requires to be
cautioned.  Successive calls for caution could well be
indicative of an incipient fault condition.

4. CONCLUSIONS

The paper has reviewed some of the fundamental features of
self-tuning control and, in particular, has discussed issues
pertinent to its successful practical implementation.  The
deficiencies in practice of linear model based self-tuning control
are considered. In an attempt to overcome these deficiencies the
usage of bilinear model structures, within the self-tuning
algorithm, have been reported and the advantages of
incorporating cautious least squares within the estimation
algorithm discussed. The resulting self-tuning controller, which
has been applied successfully to a number of practical industrial
applications, is believed to offer a realistic approach in practice
and represents a significant step forward in promoting model
based control of nonlinear systems.
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