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Abstract: This paper deals with the problem of designing an adaptive regulator in order to improve transient
performance in time-response when the linear state-space model of the plant contains unknown parameters which
vary within prescribed bounds. The whole possible parameter space is divided into some subspaces and multiple
models and controllers are established from the view point that each controller gives satisfactory transient behavior
for systems corresponding to each parameter subspace. Based on time-response and an associated cost function, an
appropriate controller is selected on-line out of multiple controllers.
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1 Introduction

In the last decade, a considerable amount of work has
been done in the field of controlling uncertain dynamical
systems. Roughly speaking, these methods are classified
into the robust control and the adaptive control according
to different assumptions and approaches. The fundamen-
tal distinction between them is that the adaptive control
approach explicitly involves structure for reducing uncer-
tainty, while the robust control approach does not.

The almost conventional robust controller design
methods have focused on stability robustness, in which
a single and fixed controller is used in order to stabi-
lize a system of which parameters vary within prescribed
bounds (e.g. Petersen and Hollot, 19868, Khargonekar et
al., 1990). In these control schemes, however, attainable
performance such as transient behavior in time-response
is not obvious. Recently, although attention is being
given to robust control methods with additional perfor-
mance robustification (e.g. Bernstein and Haddad, 1989,
Khargonekar and Rotea, 1991, Luo et al., 1994), since
robust control schemes do not reflect a posterior: infor-
mation in the control law, they result by nature in the
worst case design. In attaining the higher performance,
it 1s necessary to obtain on-line information relevant to
each control objective and utilize it in an active fashion.

On the other hand, adaptive control systems consist
of a parameterized controller and an identifying mecha-
nism (Ortega and Tang 1989). The typical adaptive con-
trol scheme 1s the parameter adaptive control, in which
unknown parameters are estimated explicitly, and control
parameters are determined based on these estimates. De-
pending on the estimation and control schemes, various
possibilities exist for designing such adaptive controllers.
However, since these methods must have accurate dy-
namics or stochastic model of unknown parameters, they
are not necessarily practical. Moreover, it is also pointed
out that even in the so called “ideal case”, stable adaptive
controller does not necessarily gurantee good transient re-
sponse. Adaptive control methods to improve transient
response are now in progress (e.g. Narendra and Balak-

ishnan 1994).

In this paper, we present an adaptive control de-
sign method in order to improve the transient perfor-
mance in time-response. No knowledge of the accurate
model or stochastic behavior concerning parameter un-
certainties is assumed. The only a priori information
available i1s that unknown parameters vary within pre-
scribed bounded ranges. First, in addition to the nom-
inal model, multiple linear models are selected a priori
from all possible plants, and a family of optimal con-
trollers is determined, in which each controller is designed
for the individual linear model so as to achieve the de-
sired time-response. The whole possible parameter space
is divided into some subspaces and multiple models and
controllers are established from the view point that each
controller gives allowable transient behavior for systems
corresponding to each parameter subspace. Since each
controller designed for a typified system in each parame-
ter subspace ensures the quadratic stability and an upper
bound of certain cost function for the possible systems
corresponding to each parameter subspace, an appropri-
ate controller might be selected on-line out of multiple
controllers based on time-response and an associated cost
function.

The remaining sections of this paper proceed as fol-
lows. In section 2, the problem is formulated. In Section
3, multiple models and controllers are considered ,and the
possible parameter space is devided based on attainable
time-response by each controller. In section 4, a switch-
ing rule based on the result obtained in the section 3 is
discussed. Finally, section 5 offers some conclusions.

2 Problem Formulation
Consider the following linear multi-input multi-output
system described by the state equation;
£(1) = [Ao + AA)]2(t) + [Bo + AB(D)]u(?)
pt+q

[Ao +Xp:0i(t)Di]x(t) + [BU + > 01-(t)E,]u(t)

i=1 i=p+1
(1)
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where z(t) € R™ is the state vector, u(t) € R™ is the
input vector, Ay, By are the nominal system matrix and
input matrix of appropriate dimensions respectively, and
the pair (Ap, Bo) is assumed to be controllable. The time-
varying parameters 6;(f) represent unknown parameters
which vary within the bounded ranges as

8; < 8;(t) < 0,

1=1,...

(2)

The constant matrices D;, F; represent the structure of
uncertainties. We use the notation S to denote the pos-
sible parameter space;

ptq
S = {(A0+20(t)Dl,BO+ > 6(E >

i=p+1

Pt q

Qisei<t)séi,i:1,...,p+q} (3)

The desired response z*(t) is supposed to be described
by

#*(t) = Az (1), z*(0) = (0) (4)

where A is a stable matrix. Our control objective is to
achieve the transient behavior close to the desired time-
response (4) by switching multiple controllers on-line.

Models and Con-

3 Multiple
trollers

In addition to the nominal system (Aqg, Bg), N lin-
ear models (A;j, B;),j =1,..., N are supposed to be ex-
tracted from the p0551ble system behavior patterns in S,
where the pair (A;, B;) is assumed to be controllable. We
consider multiple controllers, each of which are designed
for the individual linear model by applying the regulator
theory so as to make the plant output follow the desired
trajectory in time-response. That is, each controller is
determined for the augmented system

) u; (t)
(5)

(20)- (% 2) (208

2" (1)

=  X(t) = A; X(t) + Bju;(t) (6)
so as to minimize the cost function
B 00 . g T I — 2t (1
s = [Heo-r0) o0~
+ujT(t)Ruj(t)}dt
= [T wax @+ T o) @
where 0
5 -Q
QZO,R>0,Q—<_Q 0 ) (8)

are weighting matrices of appropriate dimensions. Apply-
ing the standard LQ regulator theory gives the optimal

solution for the minimization problem of (7) subject to

(6) as

u;(t) = K; X (t) = Kj1a(t) + Kjza™ (1) (9)
K; = -R7'B!'P, (10)
ATP; + PA; - P;B;R'Bf P, + Q=0 (1)

Since there may exist some parameter spaces around
(A;, B;) such that u;(t) gives allowable transient behav-
ior, we can find vertices of this space by iterative numer-
That is, 0 < 0 < 6, the upper and
lower bounds of 6’{ respectively, could be searched by nu-
merical iterations such that time-responses of the systems
corresponding to these vertices

ical simulations.

X(t) = (A; + BjKj + AF})X (1)

v=1,...,2°%¢

(12)
are asymptotically stable and satisfy

tg[la:c l|lz(t) —z"(t)|| < ¢

(13)

where ¢ is an allowable error bounds specified in advance,

and AFY,v=1,..., 2P+¢ are vertex matrices of
P pte
(S o) (Sen)
AF}(QZ) = i=1 + i=p+1 I{]
0 0 0
~(14)

Remark 3.1: From continuity of the eigenvalues of A; +
B, K; + AF; (67) with respect to 67, there exist neighbor-
hood around (A;, B;) such that (13) is satisfied.

As in the case of (3), the parameter set .5; character-
ized by (A;, Bj) and 6/,6! can be written as

e R

rty
S; = {(A +Z€’ (t)Di, Bj + Y 0I()E )

t=p+1

Since Aj +Bj f(j +AFy, v=1,..., 2P +9 are stable matri-

ces, 13]- > 0, the positive definite solution of (11) satisfies

(Aj + ij{j + AF;’)T}B]' + 151(/1] + ij\"j + AFJ-“) <0

for Yv=1,...,2r%¢ (16)
Equivalently, 15]- > 0 satisfies
(4; + B E; + aF; )"
+5;(A; + BjKj + AF;(t)) <0
for vel(t) € o], 9]] (17)

since the left hand side of (17) depends affinely on 6! (1),
where AFj;(t) is the time-varying version of AFJ(O{) in
(14). That is, u;(?) ensures the quadratic stability of all
possible systems corresponding to the j—th parameter
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set 5;.

Remark 3.2: Althogh the quadratic stability of all pos-
sible plants corresponding to S; is ensured by utilizing
u;(t), (13) may not always be satisfied.

In order to cover the all possible plants corresponding
to S, the following condition should be satisfied;
N

U S; D S

j=0
Remark 3.3: The number of models to satisfy (18) de-
pends on both how to select family of models and the
size of allowable error bound ¢ in (13). As ¢ become
smaller, the N Increases.

(18)

4 Switching Method

In this section, based on the multiple models and con-
trollers obtained in the previous section, when to switch
and what controller should be selected are discussed.
Since u;(t) ensures the quadratic stability of all possi-
ble systems corresponding to the j—th parameter set S,
there exist L; and P; > 0 which satisfy

(Aj + B;K;)" P, + Pj(4; + B; K;)

+KTRE; +Q+LTL; =0 (19)
LTL; > AFE ()P + P, AF (1)
for vol(t)elel, 6] (20)
(See Luo et al.,1994). Using the identity
S (XT P X)dt
—XT ()P X (o0) + XT(0)P; X (0) =0 (21)

the following holds;
.](u]‘ — S]' s .”L‘(O), OO)
= / (XT(t)QX(t) + u; T(t) Ruj(t))dt
a
= XT(0)P; X (0) = XT(o0) P} X ()
+/ {XTP X+ XTPX + XTQX + u] Ruy}dt
0
(22)
From (19),(20) and X(oc) =0
J(u; — Sj,2(0),0¢) < XT(0)P;X(0)
= J{u — ;,2(0), %) (23)
Since J(u; — S;,z(0),o0) is an upper bound of (7) when
u;(t) is applied to systems corresponding to the j—th pa-
rameter set S;, this upper bound can be used as a crite-
rion for judging the validity of the selected controller.

Now, let t, represent a switching instant. Then, we
determine the next switching instant t,4; as

top1 =t +minTt, th =0 (24)

such that

J(uj — Sg,x(ty) ts + T) > f(uj — Sj,z(ty), te + 7‘)
(25)

where

J(uj — Sa,2(ts). ts + 1)
: tedT ;
:/t {(I(t)—x*(t,ts))TQ(:c(t)—r*(t,ts))

+u] (t)Ru; (t)}dt (26)

(Lt ) = Az (t,ty), x7(ts,ts) = 2(ty) (27)

1s the actual performance, and

J(uj — Sj z(ts). bt + 1)
= XT(t )P X (ts) = XT(te + T)P X (t, + 7)(28)

is the worst case performance when u;(t) is applied to
the possible systems corresponding to the j—th parame-
ter subspace.

Next, we select an appropriate controller by compar-
ing the time-response of the plant with those of multiple
models over the time interval between ¢ and #,,,. t is

defined as

t=max{t € (te,tsp1) | Jz(t1) — 2" (t1)]| < e, t1 <
and |[x(tz) — x*(t2)|| > €, t < t2} (29)

, which indicates the latest time instant when the tra-
jJectory of the plant deviate from the allowable range
defined in (13). Then the j—th controller is switched
at t,41 to i—th (i # j) controller, where the trajectory
z(t),t € [t.toy,] for i—th model
zi(t) = A;mi () + B,juj(i),

z;(t) = z(%) (30)

gives the minimum value of the following cost function

[ ey = P (31)

The configuration of proposed adaptive control system is
shown in Fig. 1.

Remark 4.1: In switching schemes, there may be the case
that extremely frequent switching results in poor perfor-
mance. In this proposed method, since the upper bounds
of the associated cost functions are used as a switching
criterion, this phenomenon might be avoided. On the
other hand, if the upper bounds of the cost functions are
set too large, then enough number of times of switch-
ing may not occured. However, in view of the fact that
at least the worst case performance is guaranteed, infre-
quent switching may not lead instability.

Remark 4.2: The proposed method can be used to com-
plement the defect of the conventional robust control
methods considering only stability robustness. In this
case, the minimum number of models enough to prevent
remarkable performance deterioration are used.
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Fig. 1 The configuration of the adaptive control system

5 Concluding remarks

In this paper, an adaptive control method in order to
improve the transient behavior in time-response is pre-
sented. The whole possible parameter space is divided
into some subspaces and multiple models and controllers
are established from the view point that each controller
gives satisfactory transient behavior for systems corre-
sponding to each parameter subspace. Further, based on
time-response and an associated cost function, an appro-
priate controller is selected out of multiple controllers.
The following subjects are left for future research area;

1. Rigorous stability analysis considering the rate of
variation of unknown parameters.

2. Development of the effective algorithm for the se-
lection of multiple models and for the division of
the possible parameter space.

3. Stability robustness analysis in the presence of dis-
turbances
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