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Abstract The recently proposed control method using a Lyapunov-like function can give global asymptotic stability

to a system with mismatched uncertainties if the uncertainties are bounded by a known function and the uncontrolled
system 1s locallly and asymptotically stable. In this paper, we modify the method so that it can be applied to a system
not satisfving the latter condition without deteriorating qualitative performance. The assured stability in this case is

uniform ultimate boundedness which is as useful as global asymptotic stability in the sense that it is global and the bound
can be taken arbitrarily small. By the proposed control law we can deal with both matched and mismatched uncertain
systems. The above facts conclude that Lyapunov-like control method is superior to any other Lyapunov direct methods

in its applicablity to uncertain systems.

Keywords Lvapunov-like function. Lyapunov direct method. Uniform ultimate boundedness, Global asympotic sta-

bility, mismatched uncertainties

1. INTRODUCTION

There are several control methods for a system with
uncertainties which use Lyapunov direct method. These
methods use the stability of the nominal system for sta-
bilizing an uncertain system. In the methods, we can de-
sign the control law in the following way: we first select a
Lyapunov function of the nominal system and regard the
Lyapunov function as a Lyapunov function of the whole
system with uncertainties and then we design the control
law so that the Lyapunov function is decreased along all the
solution trajectories of the uncertain svstem. The uncer-
tainties are classified into matched and mismatched uncer-
tainties. The min-max method[2] and the saturation type
method[1] are representative for a system with matched
uncertainties, where a norm is used to estimate the uncer-
tainties. If a known function exists which is always larger
than or equal to the uncertainty function when it is mea-
sured by the norm, the uncertain system can be stabilized
by those control methods. But the control methods may
make the closed loop system unstable when it is applied
to a system with mismatched uncertainties. This depends
on the selected Lyapunov function and it 1s very difficult to
find the Lyapunov function by which a bounded control law
can be designed. For a system with equivalently matched
uncertainties, it is possible to find such a Lyapunov func-
tion[3]. But considerably limited class of uncertain systems
have equivalently matched uncertainties.

Recently the nonlinear dynamic control method[4] and
the control method using a Lyapunov-like function[5] have
been proposed which can be applied to a system with mis-
matched uncertainties not satisfying the conditions such as
the equivalently matched condition. In the nonlinear dy-
namic control method, a bounded control law is designed to
stabilize a system with mismatched uncertainties by gen-
erating new state governed by nonlinear equation depen-
dent on system states. And in the Lvapunov-like control
method. a bounded control law is designed by nsing the

Lyapunov-like function that works locally as a Lyapunov
function. The stability condition of the nominal system is
more restricted in the Lvapunov-like control method than
in the nonlinear dynamic control method. But when we
consider the condition for the uncertainties the restriction is
looser in the Lyapunov-like control method than in the non-
linear dynamic method: the uncertainties in the Lyapunov-
like control method is sufficient to be norm-bounded by a
known function.

In [5] local asymptotic stability of the uncontrolled sys-
tem is assumed to globally and asymptotically stabilize a
system with mismatched uncertainties. Also, control law
works only during initial period until the states reach the
region of attraction of the uncertain system. Thus the
Lyapunov-like control method is not available for an oscil-
lating control. In this paper we modify the control law of
[5] and prove that a system with mismatched uncertainties
can be uniformly and ultimately bounded without assum-
ing the local asympotic stability of the uncontrolled system.
We also show the proposed method can be applied to a sys-
tem with matched and mismatched uncertainties under the
same condition that the uncertainties are norm-bounded.

2. LYAPUNOV-LIKE FUNCTION

We consider the following nonlinear system with mis-
matched uncertainties.

z{t) = Ax(t) + Bu(t) + &(z(t})) (1)

where t € R is time, z(t) € R™ is the state, u(t) € R is the
input and £(z(t)) € R™ is the mismatched uncertainty.

In eq.(1) we call the system with £(:) = 0 the nominal
system and the system with «(-) = 0 the uncontrolled sys-
tem. If the uncontrolled system of eq.(1) is locally and
asymptotically stable, the solution trajectories originating
at the initial states in the region of attraction converge to
the equilibrium point. But the solution diverses when the
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initial states start at the point out of the region of attrac-
tion.

To stabilize globallv and asymptotically the system
of eq.(1), it is suffient to find such a Lyapunov func-
tion V(z(t)) = =z(t)TPx(t) (P is positive definite) as
(VaV(z(:)))B # 0 is satisfied. But it is very difficult to
find such a Lyapunov function. {We hereafter will assume
a quadratic function as a Lyapunov function. )

[3] proposes the following Lyapunov-like function.

ooy — 4 Yie(®) p(z(t) < -7 /4 .
= {Vzu(m Py > —ria Y
Vi(z(t)) = ¢V ((1)) (3)
Va(a(t)) = gV (2(t) + cos(p(e()) — x/4) (4
where
p(x(t)) = (V.V(z(t)))B (5)
q = (Vup(z(t))B (6)
(g 1s positive interger) and
alle®) IPS V() < e |l 2(0) P (")

The Lyapunove-like function of eq.(2) satisfies with re-
spect to eq.(1)

V.V {(x(t)B #0

The control law using the Lyapunov-like function of
eq.(2) 1n [5] gives global asymptotic stability for an example
system of eq.(1). But it requires the uncontrolled system of
eq.(1) to be asymptotically stable in the neighborhoood of
the equilibrium point. Because of the requirement the ap-
plicable systems of the control law are restricted to the sys-
tems that the uncontrolled systems are locally and asymp-
totically stable or stabilizable. Moreover, [5] requires that
the region of attraction of the uncontrolled system should
be known and that a certain condition related to the re-
gion should be satisfied; thus a Lyapunov function should
be selected for the condition to be satisfied. However it
becomes more difficult to select such a Lyapunov function
as the dimension of a target system gets larger.

To solve the above problems, we modify the control law

of [5] as eq.(8).

iy {m(a) for p(a(t) < —m/4

(#) {ug(x(t)) for p(z(t)) > —7m/4 (&)
w1 (x(1)) and w2 (z(t)) are

ARG +al@) meE)

wE) = =G Tmeon

ol - ﬂf(z(t))+91(1(t))a 27

e T
where ay(2(1)) = (VaVi(s(0)B, pu(a(t)) =]l T.Vi(x(0)
(2 (2), Bi(x(1) = VaVi(z(0)Az(t) + cs || 2(2) I (i =

1, 2)

By the control law of eq.(8) the solution of eq.(1) can be
uniformly and ultimately bounded within the neigborhood
of the equilibrium point. As we can see in theorem1 uniform
and ultimate boundedness is similar to global asymptotic
stability because it is global and the bound can be taken
arbitrarily small. The difference between the control law
of eq.(8) and that of [5] is as follows: the control law of [5]
works only during the period while the states are brought
into the region of attraction and then the convergence of
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the states is taken over to the stability of the uncontrolled
system. On the other hand the control law of eq.(8) works
all the time.

3. UNIFORM ULTIMATE BOUNDEDNESS

We rewrite here the same assumptions as in the control
for a system with matched uncertainties.

(Assumption 1)
There exists a continuous function n{z(t)) satisfying

Il €(x(1) 1< nl=(1))

(Assumption 2)
The nominal system of eq.(1) is controllable.

Lemma 1

Let z(-) be the solution of the closed loop system con-
sisted of eq.(8) and eq.(1) for the initial state of x(to) = wo.
Then || z(t) |< 6(r) is satisfied for || zo ||€ r and t > o
where r is a positive integer and

2 2 /2y <
8(r) = [:“)“L"il]l o dorse (10)
[C:r'—i—q‘Tl] 2 4f r>c¢
,
> (=)' (11)
qc1

{Proof)
First, differentiate V(z(t)) along the solution trajectories
of eq.(1). then

AV (z(t)

V.V
dt =

) Az + (V. V(x(t)))Bu(t)
+H(VaV (2(1)E(= (1))
is obtained. Substituting eq.(8) gives
< VL Vila(0)Az(t) + pula(8)

—(Bi(z(t) + p:(2(1))) _pi(2(t
I (VaVi((ON BN | el
pi(z(t))

)

= VLVial)Az()+ 1| o (x(0) | + L

(VL Vi(z(1)B - )

)
N
) |
N

and -
dV(z(t))
dt
Next, consider the solution z(t) of eq.(1) with the initial
value z(t0) = #0(< r) and put

< - ll=(t) | (12)

F = maz{r e}

then || zo ||< 7 and € < 7 are satisfied.
Then from eq.(10) we can rewrite §(r) of eq.(10) as
2
b(r) = { 25?4 =112
C1 qc
By using ¢1 || z(¢) |I°< V(z(8)) < 2 || =(£) ||* and thus
using

(g01)7° < (ge2)F”
we obtain
P2 < 8(r)
&1
Thus
| #(to) [|=I 2o lI< 7 < 8(r)



is derived.
Finally, let us assume for ta > to

I a(t) 11> &(r) (13)
then since z(-) is continuous and
| tto) I1< 7 < 6(r) <If +(ta) |
there must exists #2 € [to.€2) such that || z(¢2) ||= 7 and

|| ;l?(t) ”Z r. te [12.13)

are satisfied. But from eq.(2)
=L+ ger || =(ta) II°< V((t2))
is derived. Using eq.(12) gives
=14 ger || 2(t2) IP< gz || 2(t2) ||* +1

and from which

(SN 2 J1/2 N
| w(t2) [|< [ + =—1'% = 8(r)
(&} qci
is obtained. This is contradict to the assumption of eq.(13).
Therefore

20 1< 8(r). 1> 1o

1s assured.

We will show in the following theoreml the solution of
eq.(1) to be uniformly and ultimately bounded by using the
control law of eq.(8).

Theorem 1

For a ¢ satisfving eq.(11) and r(>] xo ||). T(e.r) < x
exists and the solution of the closed loop system of eq.(1)
and eq.(8) becomes || (t) |< & at t > to + T(r.7) where

- 2
e R (14)
Cy gcy
2 2
T((.r‘):-q-(#-l—l'-—,;— (15)
(11(55
(‘2‘7‘2 < ¢y 1,/'2, P < (16)
(]('255 < mi‘n{q('lfz - 2. qc‘zrz} (17)

(proof)

For the initial value of || z(to) ||< r and the initial time
to, a time 11 € [to.?o + T(e, r}] exists such that || #(t;) ||<
b2 1s satisfied. This is proved by contradiction as follows.
First, let asssume

| #() ||> b2, t €[t to+T(e, r)] (18)
then from eq.(2) and eq.(18)
—1+ g8y < V(a(to+ T(r.7)))
tatTler)
= Vix(to)) + [ V{z(r))dr

0

and by using || #(to) ||< r and eq.(12)

rto+T(cr)
el
<14gear” -/ &
t

0

x(r) |7 dr

and thus using eq.(18)

<14 gear® — cabiT(e,r)
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and finally using eq.(15)
= —1+ger’ —qary’
are derived. From which
ger85 < gear® — gor?
18 derived and by using eq.(16)
gci (55 < 0

is derived. But this is a contradiction and thus shows that
eq.(18) is true.
Next, let t' = to + T'(e.r) then from V{(z(t)) <0

~14gey [ 2(£) P< Viz(t)) < V(n(t))
is derived and from eq.{2)
—1+yge || =) < gez || #(0) ||* +1
is derived. Using || z(t1) || < 62 leads to
=14 ger [l e(t) P gea || &2 |7 +1
and using eq. (17) results in
—l4qger [t P< 1 +gaed =2

Thus
b ()P < e
and
() lI< e
are derived.

Finally. since t' = to + T{e.7) and || =(¢') ||< ¢. from
lemmal || z(#') |< &(r) and thus

= 2 2 .3 >
M) < b=[2 4 =]
(6] qc

t>to+T(e.r)

are derived and the proof is completed.

4. SIMULATION

We examine the result of the previous section by the
following numerical example.

it) = [(1) g] £(t) + [‘1’] () + {0'“’(’)(”'] (19)

where &(2(1)) = [0.1z1 (£)° ()]T Is the mismatched uncrtain-
ties.

Let us take the following as a Lyapunov function candi-
date for the uncontrolled system of eq.(19).

Vir(t)) = 2()T Pa(t) = o(t)7 [; i] (1) (20)
Then p(z(t)) = 2z1() + 422(t), ¢ = 4.

2 By using this we
can make V'(z(t)) as in eq.(2).



For eq.(1) and V(z(t)). the following input variables are

obtained.
o {x(1)) = ¢ * (221 (1) + dz2(t))
aa(2(1)) = ¢ * (221() + 422(1)) — ¢ * sin(p(z(t)) — 7/4)
pi(x(t) =|| ¥ quDH*0M1+rdwﬁ
p2(x(t)) = p (f)) 2+ (14 2(1))

#(r(1)) = q*wP[g f,] O+ =) I

enels o]

Using those, we design the control law of eq.(8).
set ¥ = 2.5. ¢ = 0.70 then since ¢c; = 1.81, ¢» =
coefficients of theorem1 become

Y= 4.48, 62 = 0.23

T(e.r) =95.13

& = 1.50.

The simulation results are as follows.

BF2(x(1)) =
Fi(x(t)) — sin(p(x( t)_Tr/4)va

it we
7.20 the

First, the system
response for the initial value of zo =[2 1]7 and w(-) = 0 is
P

shown divergent as in Fig. 4.1.
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Fig. 4.1 Response for zero input
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Fig. 4.2(a) Response for Lyapunov-like control input
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Fig. 4.2(b) Control input

On the other hand. when the Lyapunov-like control law
is introduced, || z(t) ||< 0.70(z > 10) as in Fig. 4.2(a),
and thus the result is as predicted in the previous section.
Also we can see that the estimation of T(e,r) in theoreml
is conservative.

5. CONCLUSIONS

In this paper we modified the Lyapunov-like control law
of [5] and could give to a system with mismatched uncer-
tainties uniform and ultimate boundedness under the same
conditions as assumed in a system with matched uncertain-
ties. This achievement can apply Lyapunov-like control law
to oscillating control problem.
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