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Abstract:

This paper proposes a robust control method using Universal Learning Network(U.L.N.) and second

order derivatives of U.L.N.. Robust control considered here is defined as follows. Even if external input (equal to
reference input in this paper) to the system at control stage changes awfully from that at learning stage,the system
can be controlled so as to maintain a good performance. In order to realize such a robust control, a new term
concerning the perturbation is added to a usual criterion function. And parameter variables are adjusted so as to
minimize the above mentioned criterion function using the second order derivative of the criterion function with

respect to the parameters.
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1 Introduction

Universal Learning Network(U.L.N.) and a computing
method for its higher order derivatives have been proposed
[1]{2}, which can be used as a fundametal tool in modelling
and control of large-scale complicated systems such as eco-
nomic, social and living systems as well as industrial plants.
In case of designing a control system using U.L.N., the sys-
tem to be controlled and the controller are both constructed
by U.L.N., and the controller is best tuned through learn-
ing to minimize a criterion function which is assumed to be
function of the target value of system node output, actual
value of system node output and output of the controller.

U.L.N. has the same generalization ability as Neural Net-
work(N.N.). So the controller constructed by U.L.N. is able
to control the system in a favorable way under the condi-
tions different from those of the control system at learning
stage. But stability and performance can not be realized
sufficiently under the conditions much different from those
at learning stage. One of such conditions is perturbation of
the initial values of the system [3], another is perturbation
of the system parameters [4]. The difference between ref-
erence input at control stage and that at learning stage is
considered in this paper.

Finally it is shown that the controller constructed by the
proposed method works in an effective way through a sim-
ulation study of a nonlinear crane system.

2 Structure of Universal Learn-
ing Network

Basic structure of U.L.N. which consists of nonlinearly op-
erated nodes and branches that may have arbitrary time

delays is shown in Fig.1.
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Fig.1 Structure of Universal Learning Network
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Basic equation of U.L.N. is represented by Eq.(1):

h(T;,t) = Oj({h(Ti'vt_DiJ'Ii € I)}a{’\m(t)}
s {rm: (O}, {umn ()}), (1
where
h(Tj,t) output of T; node at time t, ( € R)
Am(2) mth parameter variable at time t,
T (1) m’th external input variable at time t,
U () m''th control variable at time t,
O; nonlinear function of T} node,
D;; time delay from T; node to Tj node,
I set of nodes whose output are
connected to T; node,
R set of suffixes for nodes,
T set of sampling times.
Let a criterion function be written in Eq.(2):
E = E({A(T, )}, {um ()}, {Am(s)}) (2)

re€R, R, set of suffixes for nodes
related with evaluation,
m' € M: M:,l set of suffixes for control variables
related with evaluation,
meM, M, set of suffixes for parameter variables
related with evaluation,
s€S, S, set of sampling times related

with evaluation.

In the following chapters,a computing method for derivative
of criterion function E with respect to parameter variable
Am (o) is presented,which is essential to design a robust con-
trol system using U.L.N.[1][2].

3 Computation of Higher Order
Derivative

3.1 First Order Derivative

First order derivative of E with respect to parameter A (¢p)
can be written in the form of Eq.(3),assuming t; to be des-



ignated sampling time,

3E  O'A(Ty,s)
= 2 Z(ah(n,s) 31 (to) )

r€R, 2€S,

a,\l (to)

OE

Mwent ®)

As M(f A} and 6«\1(Eto) can be calculated easily from

Eq.(2), it is a matter of importance to calculate T-(TDT)-" 2me
Here t denotes the ordered derivative proposed by Werbos

(51

Generally, Bh(Tut) o he represented by Eq.(4).

821(to)
' h(T, 1) 5 ( Oh(Ty,t)  3'A(Ty,t — D,-k))
AA1(to) Y Oh(Tj,t — Dji) dAi(to)
Oh(Tx,t)
+ az\l(to) i (4)
where
J ¢ set of suffixes for nodes whose outputs

are connected to T node.
Putting Py(Te,t, A1 (to)) = %2088, iterative equation
of P; by forward propagation can be obtained from Eq.(4).
Pl(Tk’ t, A1 (to))

~ Oh(Tk, 1) L
= Z[@h(Tj,t-—Djk)Pl(TJ’t
JEJ

Oh(Tx,1) (k € R)

AAi(to) (teT), (5)
Since h(Tj, to —1) does not depend on A; (%), initial value

of Eq.(5) is as follows.

Dy, M(to))]

+

Pi(Tj,to ~1, (%)) =0  (j€R). (6)
3.2 Second Order Derivative

Second order derivative of E with respect to parameter
variables A1(%0), A2(f9) can be obtained by differentiating
Eq.(3) with respect to Aa(%o) ,

ME
6,\1(to)6/\2(t0) - Z Z [

r€ER, s€S,
OE  OVK(T.,s)
Oh(Ty, 8) 0A1(t0)OX2(t0)

(m)
az\z(to) (7)

E%t(:—;'%—;'a%;n Eq.(7) can be represented by Eq.(8) by
differentiating Eq.(4) with respect to A2(o),

0nh(Tk ,t)
oA (to )0A2(10)

_ Z[ "(arttretay) 8'h(Ty,t - Dis)

Bz (to) (o)
Oh(Ty, 1) 6’2h(T,~,t—Dn)]
Oh(T;,t — Dji) OAi(t0)dA2(to)

at Oh(Ty
(§3) o

( ) ) Oth(T., s)
ha(to)  OAilto)

+

<+

Az (o)

Putting P\ (Tk, t, M1(20)) = %{l,md Py (T, t, M1(ta),

Az2(to)) = 31\811::) g\al(‘o) , as in the case of first order deriva-
tive, iterative equation of P; by forward propagation can be

obtained from Eq.(8),
Py(Tk,t, A1 (t0), Aa(to))

Sh(Ty,
= Z[af(mﬁ&j—)ﬁ —:)—’k‘) Py(T;,t
je

a/\ﬁ(to) _D.ik”\l(to))

Oh(Tk,t) ]
—— ivt — Djx, A1(to), A2 (2
+ ah(Tj,t—‘Djk)Pz(T}’t Djy, 1( 0)’ 2( 0))
af Ah(Ty,t
» 2ly) (k € R), 9)
9a(to) (teT).
Py(Tj,t0 — 1, M (to), A2(t0)) = 0, (10)
(7 ER).
at B8h(Ty ,t) at 8h(Ty ,t)
(s i ik ), ( 23O ) in Eq.(9) can be calculated
9X32(20) dAz2(t0)
by the computation of first order derivative, putting E =
Sh(Ty, _ Oh(Ty, .
8h(T,(th B“), = 8,\(1(';:)) respectively.
Substituting 2k T & a*’h ;t\ 2 4oy Obtained from

X
Eq. (5) (6) and Eq (3 (10)
m can be calculated.

4 Robust Control Method

4.1 Criterion for suppressing perturba-
tions of node outputs by change of
the external input

respectlvely into Eq.(7),

E is a usual criterion function, Ey is a new term which
takes charge of suppressing perturbations of node outputs
of the system caused by the change of the external input

at time t;. Then a new criterion function L is defined as
follows:
L=E+Eq, (11)
t 2
= ¥ Yoen( waw(tl )
Tm/ (tl )
s€Sy; reR, m'ely ,
(12)
R, : set of suffixes for nodes
related with suppression,
I, : set of suffixes for external inputs
related with perturbation,
St : set of sampling times related
with suppression,
T (t) :m'th external input at time t
CH, >0 : coefficient for T, node.

t R .

%Arm:(tl) means the perturbation of T, node
output caused by the change of the external input r,,: () at
t1. Eq.(12) is the sum of those squared.

4.2 Learning Algorithm

The aim of the optimization learning using U.L.N. is to
search for the parameters which make the above criterion
function L minimal. (From now on the parameter variables
are considered to be time invariant.)
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The parameter variables in order to minimize Eq.(11) can
be calculated by a gradient method.

Am = Am g,\L

o'L _9'E + d'Ey

Om ~ OAn  Bm

7 > 0 : coefficient,
Now,computation of £ 3— and -3—1 can be carried out

by making use of the first and the second order derivative
in chapter 3.

(13)

where

|A] Computation of g;—'En

Putting A1(to) = Am, g\—E can be calculated using
Eq.(3),(5)

[B] Computation of %ﬁﬂ.

First order derivative of Ey with respect to A, can be
obtained by differentiating Eq.(12) with respect to Am,

atEH
o
_ ath(Ts,s)
- 2 ’EZS:L:L;CH,[( Z o~ ,(tls) A m/(t1)>
(3 s )] 09

ath(Tr,s) 8'30(Ty,s)
Now, 3 ,(1'1) ) Bror(11)9Am

putation of —EH-

. t
< Computation of %rﬂ%';—’l‘% >

Putting E=h(T:,s), A1(to)=rm/(t1) and making use of
the first order derivative in chapter 3, Eq.(15),(16) can be
obtained,

are necessary for the com-

A'h(T,,s) _
(1) Pi(Tr, 8,7ms(11)), (15)
Py (T, t, 1 (1))
— ah(Tk,t) . ' ]
- Z[ah(Tj,t_D#)Pl(Tzat Dk, i (1))
i€eJ
ah(Tk’t)
Orm:(t1) (16)
< Computation of ‘3 I"hTr L >

Putting E=h(T,s), /\1(to) rms(t1), A2(to) = Am and
making use of the second order derivative in chapter 3,
Eq.(17),(18) can be obtained,

"' h(T, 5)

m Py(Tr, 8, 7m(t1), Am).

a7
Py (T, ¢, T (1), Am)

0" (wtr, 0wy

= Z[ N Pl(Tht'_Djk,Tml(t]))
jeJ m
Oh(T,t) .
t Bh(T,i-D ,k)P2(T”t Djk,Tm (tl),Am)]
at ah!T? ,t)
+ __(_ml_'l_)). (18)

7).,

ot Bh(Ty 1)
Both the coefficient of P, in Eq.(18), ——(—5'——1-—)-

ot (22p.0
and -Lmﬂ—l can be calculated by computing the first

FAm
Ll o Oh(Ty.t) 8A(T 1)
order derivative of E = T, t—D50) and E = 37 D Te

spectively using Eq.(3),(5).
5 Numerical Example
5.1 Controlled System

The controlled system is a nonlinear crane system. A po-
sition of the crane stand, an angle between the rope and
vertical line and a position of the load are represented by
z, 8, | respectively. Then the nonlinear crane system is
described as follows:

dz mg D+Gdz G
pr i VA T A VA
4’0 M+m D+Gde | G
@ = "o o oa T, 19
& _C4Gmd  Gm,
der m dt m
where, wui1,u2 are input voltage to a motor for mov-

ing the crane stand and to a motor for rolling up the load
respectively,and C, G,Gm, D, M, m are appropriate system

parameters.
Putting

h(Tlat) = '?(t)s
h(T41t) = O(t)v

h(T2,t) = &(t),
h(Ts,t) = 1(1),

h(T37 t) = a(t)v
h(Ts,t) = (),

Eq.(19) can be transformed into discrete type equations
as follows:

R(Ti,t) = auh(Th, i)+ aah(T, 1),
h(T2,t) = anh(Ty, i)+ asnh(Ts,E) + biui (),
h(Ts,t) = assh(Ts, ) + awsh(Ty, i), (20)
DL CLT B s 1)
h(Ty,t) =
T P A Y]
h(Ty, 9,
+agsh(Ty )h(T t)ul()
h(Ts,t) = assh(Ts, 1) + agsh(Te, ),
h(Ts,t) = assh(Ts,t) + baua().

wherei =11
A control model of the nonlinear crane system using
U.L.N. is shown in Fig.2. Each control input u;, u2 is con-
structed by two control nodes respectively ,one is the node
with linear function,the other is the node with tanh func-
tion. (All branches have one sampling time delay.)

xmfiL

Tret 3

crane
controller

=

1:1 sampling time delay

Fig.2 Control model of a nonlinear crane system
using Universal Learning Network
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5.2 Criterion Function

M=40[kg], D=300[kg/sec], G=700{N/V], m=2[kg],g=9.8
[m/sec?],Gn=0.98|N/V], C=0.42[kg/sec| are used, and ref-
erence of moving the crane stand(z,.s) is 1{m], reference of
rolling up the load(l,. ) is 0.5[m], assuming initial positions
of the crane stand and the load to be 0[m], 1[m] respectively.

Therefore, when the parameter variables are tuned
through learning, initial values of node outputs of the sys-
tem are set up as follows:

1.0 i=35
WT,0) = 0.0 otherwise (21)

In numerical example, a step change of reference input
at initial time is assumed, namely r,,/(t;) = l;.s.

The criterion E to achieve the desired dynamics of the
system and Ep to achieve the suppression of the perturba-
tion of the system caused by the change of the reference of
the position of the load are defined as follows respectively,

E = %[XS: {Q@u1(@res — R(T1,9))*} + Qu2(h(Th, tf))?
+ E{le(h(Ts, 5))? + Qua(h(Ty4, 5))*}
s€S,
+ is,:{Qlﬁ(Iref — h(T5,9))*} + Que(h(Ts, t5))*
8€S,
+ Y {Ri(W(T, ) + Ra(W(Tio, o))} (22)
$€ES,
Ex = Y ) cm(%ﬂ Al,. f)2 (23)
8€ESL r€ER, '

Using the values of Table 1, two cases have been studied,
one(named caseg) is the case of using the criterion function
E, the other(named caser) is the case of using the criterion
function L. A total number of learning is four thousand.

Table 1 Simulation Conditions

St :  set of all sampling times
R, : nodes related with x, %, 6, and
ty : final time (= 7.5[sec])
On : 0.5
Q2 : 10.0
Qoihera : 1.0
Ri~R;, : 01
Alyey 1, (CH, is represented in Figure.)

5.3 Simulation Results

Control results of both caser and caser at learning stage
are shown in Fig.3. Fig.4,.5 show the control results in
case of l;.; = 3.0,6.0 at control stage respectively. For
example, z,§ of caseg are oscillating in Fig.4,especially in
Fig.5.

From these results, it is found that the bigger difference
between I,.; at control stage and I,..; at learning stage is,
the worse the performance of caseg is , in spite of caser’s
better performance.

6 Conclusion

In this paper, a new robust control method is proposed for
a change of the reference input and it is found that the
method is very useful through simulation study.
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Fig.3 Control results at learning stage : I,.; = 0.5
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Fig.4 Control results at control stage : I,.; = 3.0
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Fig.5 Control results at control stage : ly.y = 6.0
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