Proceedings of the 11*
KACC, October 1996

Failure Recoverability by Exploiting Kinematic Redundancy

Jonghoon Park*, Wan-Kyun Chung**, Youngil Youm™*

* Graduate Student in Dept. of Mech. Eng, POSTECH
** Professors in Dept. of Mech. Eng, POSTECH
Tel: +82-562-279-2844; Fax: +82-562-279-5899; E-mail: jhpark@risbot.rist.re.kr

Abstracts This paper is concerned with how to utilize kinematic redundancy to reconstruct the inverse kinematic
solution which is not attainable dur to hardware limitations. By analyzing the error due to hardware limitations,
we are to show that the recoverability of limitation reduces to the solvability of a reconstruction equation under
the feasibility condition. It will be next shown that the reconstruction equation is solvable if the configuration
is not a joint-limit singularity. The reconstruction method will be proposed based on the geometrical analysis of
recoverability of hardware limitations. The method has the feature that no task motion error is induced by the
hardware limitations while minimizing a possible null motion error, under the recoverability assumed.

- 1. Introduction

Seen from the kinematic viewpoint, the manipulator
is represented by a nonlinear map called the forward
kinematics. To proceed, we assume that the manip-
ulator has » DOF and is to operate in a m(< n) di-
mensional task space. A task position is denoted by
p={(p1, ,Pm)’ € R™ and a pose of the manipulator
is specified by ¢ = (q1,--,q2)T € R*. The forward
kinematics can be represented of the form

r= f(q) (1)

where f is a smooth nonlinear map. To operate a task
specified in the task space, we have to solve the inverse
kinematics of the manipulator, i.e. to find g such that
f(g) = p for a given p. Since the nonlincar map in-
version is not so tractable, the usual inverse kinematics
is done at the velocity level under the name of resolved
motion rate control

of

J(q)=aqT

p=J(q)q, (2)

where the m x n matrix J is the Jacobian. From (2)
the inverse kinematics is solved by inverting the Jaco-
bian matrix, if the pseudoinverse may be taken as a
substitute for J 1.

The difficulty due to kinematic and hardware limi-
tations lies in solving the inverse kinematics of the ma-
nipulator. Most kinematic limitations are manifested
as singularity of the Jacobian. This kind of kinematic
limitations can be overcome by utilizing kinematic re-
dundancy, i.e. n > m. The number r = n —m is
referred to as the degrees of redundency. The (kine-
matically) redundant manipulator is defined as a ma-
nipulator which has more degrees of freedom (DOF)
than the dimension of the task space. The advantage to
overcome kinematic limitations is derived from the fact
that there are (n — m) dimensional inverse kinematic
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solution manifold, called the self-motion manifold (1],
corresponding to a fixed task position p € R™.

Besides the kinematic limitations, hardware limita-
tions make the inverse kinematics difficult. For exam-
ple, the inverse kinematic solution which is impossible
due to joint travel and/or velocity limits entails a big
error. Recently some works were proposed to exploit
the kinematic redundancy to solve the hardware limi-
tations. Cheng et al. [2] developed their own invelse
kinematic algorithm using the quadratic programming
for redundant manipulators which can incorporate the
joint travel and velocity limits. Sung et al. {6] also de-
veloped their own using the Kuhn-Tucker optimization
theorem. They can be considered as a direct method
in the sense that the inequality constraint regarding
the hardware limitations is directly incorporated in con-
structing the inverse kinematic solution. That is, they
tried to solve directly the inequality and equality con-
strained nonlinear optimization problem:

To find a solution q or ¢
which optimizes m(q)

subject to
fl@)=p or J(@g=p
g< g <49
g< ¢ <aq

Recently, there appeared a method to solve the hard-
ware limitations called the joint velocity reconstruction
method [5]. The basic intuition behind the method is
that the task motion error induced by the hardware
limitation can be eliminated by adjusting the velocity
of the other joints which are not limited. Inspired by
the method, we refine the properties pertinent to re-
constructing a limited joint velocity using the notion
of the recoverability. The concept of the recoverabil-
ity will prove useful in understanding the joint velocity
reconstruction.



2. Weighted Kinematically-Decoupled

Kinematic Modeling

In this section, a brief review of the kinematically de-
coupled joint space decomposition of redundant manip-
ulators [4], focusing on the aspects concerned with the
inverse kinematics will be given. A main contribution
of the method lies in providing a systematic method to
define a coordinate transformation to the kinematically
decoupled coordinates which consists of the task veloc-
ity and minimally parametrized null velocity. Also, the
method was extended to the weighted pseudoinverse
method [4]. Since the weighted pseudoinverse method
is more general, we discuss the latter.

The fact that a weighted pseudoinverse of J, denoted
by J W+ induces a joint space decomposition is under-
stood by observing the inverse kinematics

g=3"p+ (1-7747)z. (3)
That is, the inverse kinematic (velocity) solution space
is a direct sum of the range space of JW* and the
weighted null space of J. By noting that each spaceis a
vector space of dimension m and r, we can parametrize
elements of each subspace with m and r parameters. A
minimal parametrization should be followed by a well-
defined coordinate transformation. It was shown that
the coordinate transformation is given as

[RW‘% (‘IW'%RW‘%)_I (4)
p

N4 (Zw‘*NW')*’)—l] ( Ty )

where the various matrices will be defined below. Note

- W%

q

that the minimally parametrized null velocity n 3 €
Rr, called the weighted null velocity, is defined by
hwi =ZWz. (5)

The square matrix in (4) is indeed nonsingular, if J has
full column rank m, and defines a coordinate transfor-
mation.

The various matrices appearing in (4) can be given
using the weighted Jacobian J 3 € R™*™ and its

€ R™*". They are coun-

terparts of J and Z defined in [5] in pseudoinverse de-
composition. Using J(q), Z(q), and the square-root of
W e jrxn

null space basis matrix Z 4

W=wiw}
Jw—!f and ZW_,“ are computed by

Jy=dW i Z _, =zZwi (6)

By taking the eigenvalue decomposition of a real
symmetric matrix J‘TV_%JW_% we get two matrices

RW_% € R™*™ and Nw*if € R™*" from the expres-

sion
=2 0
JtTv-%Jw—% [RW“% N4 ][ 0 0]
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[ Ry Ny ]T’ (7)

where £? € R™*™ js the diagonal matrix with the
. T .

nonzero eigenvalues of J N J w-4 a8 the diagonal el-

ements.

Remark 2..1 The matrices R__; and Nw*% can be
arbitrary while satisfying (7). However, the arbitrari-
ness does not affect the derivation of this paper.

The transformation (4) can be considered as a kind
of inverse transformation. By inverting the transforma-
tion we get the forward transformation from g to the

T
i)

kinematically decoupled velocity (j)T, 'r'zw 3

( "’Z% ) B [ Z(qJ)(Vq‘}(q) ]q'

Given g at g, the task velocity p is obtained by applying
J, whereas the weighted null velocity n.,4 s by ZW.
Since (4) is the inverse transformation, the equation
can be directly used as an inverse kinematics algorithm.
In other words, given a desired task velocity p, € R™,
the kinematically decoupled inverse kinematic method

constructs the inverse kinematic velocity by
Jo

_1 -1
w: [Rw-if (JW'%RW-*})
where hw% P is an r-dimensional desired weighted null

(8)

qd =
. Py
Tty

‘NW‘% (ZW‘i Niy-4 ) ——1} (

velocity to utilize kinematic redundancy. The solution
by (9) leads to

J(q)qq P (10)
Z@W(@a = (1)

Thus, the set of inverse kinematic solutions
parametrized by a r-dimensional null velocity. If n

is
wha
is obtained from z € R" in (3) by (5), then two equation
(3) and (9) are equivalent.

3. Analysis of Joint Hardware Limitations

When the calculated joint velocity by (3) or (9) can not
be achieved within the joint limitations of the following
form _
a<q(t) <4 (12)

the expected performance by (10) and (11) cannot be
anticipated.

To proceed the development, let us define the follow-
ings.

DEFINITION 3..1 (degrees of limitation) The de-
grees of limitation s is the number of joints which does
not satisfy

d, < d < G
Such joint is called the limited joint, and the others are
called the feasible joint.



DEFINITION 3..2 (recoverable) A hardware limita-
tion is said to be recoverable at q, if there exists, at
least one, another ¢ within feasible velocity range which
produces the same task velocity. Then the velocity is
called the reconstructed velocity. Any limitations oc-
curring at a kinematic singularity is not recoverable by
definition.

From the definition, we can have the following proposi-
tion.

PROPOSITION 3..1 No velocity limitations are recover-
able for nonredundant manipulators.

The proof is not difficult, as the theorem itself is trivial
by understanding that nonredundant manipulators is
not recoverable at any q if joint limitation occurs. The
actual proof is deferred later. By the definition, if a
joint velocity limitation is recoverable at g, then we can
choose a reconstructed velocity (within feasible range)
as the inverse kinematic solution, since it leads to the
same task velocity.

Now the error due to joint limitations will be ana-
lyzed. Assume that the degrees of limitation is s, and,

say, ki1, k2 --- k, joints are limited. A motion resulting
from the limited solution ¢
q= (QI le Qj ‘jk, qu)T
is obtained by
p = J(9)9g
n,y = Z(@QW(a)g

Hence it is easy to see that the task motion error is
given by

Ap = p-p = J(@a-JT(@)q = T(@Dq (13)

where s-vector Ag and m x s-matrix .7(q) is composed
as follows

(jkx _/q\kl
Aq =
qr, “Ek,
j(q) = [J(kx) J(k2) J(k:)]

where J¥ denotes the j-th column of J(q). Also, the
null motion error is similarly obtained
Z(q)W(q)Aq

An (14)

wi =
by observing that ZW = Zﬁ\/, where W is composed
of k;-th column of W.

Remark 3..1 When W = I, An 2(q)A(], where
Z € R™** consists of k;-th column of Z.

Note that the joint limitation Ag induces an error in
both task and (weighted) null motion.
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Now we are to propose a condition guaranteeing the
recoverability of joint limitations using the above er-
ror analysis. The basic method we aim at is that we
can eliminate the task motion error by adjusting the
velocity of the feasible joints. To develop the idea, the
adjusting velocity of the following form

@ = (4 0 4; 0 )7
0 0
k1 ks

is considered reflecting the fact that the limited joint is
not adjusted. If the limitation is to be recoverable by
choosing a candidate reconstructed solution by

9" =q+qo, (15)

it should satisfy
p=Jq" =Jq+Jq,.

In view of N L
Jqo=Jq

where ¢ € ®"™* consists of the adjusting velocity at
(n ~ s) feasible joints, and J € R™*("~3) consists of
J@ with ¢ ¢ {k1, -, ks}, there follows

Jg = p-Jqg = Ap. (16)
The equation is called the reconstruction equation, since
if there exists a solution g € R"7* satisfying the equa-
tion, then the limitation is recoverable, and also a re-
constructed solution is given by (15).

The following theorem immediately follows.

THEOREM 3..1 If there exists a solution to the recon-
struction equation (16) given Ap such that g is feasible
for 7 # kq, then the joint limitation is recoverable and
a reconstructed solution is given by (15).

Proof. The requirement of no task motion error is
clear by the discussions above. Also, by the assump-
tions regarding the feasibility, the conclusion follows.

4. Joint-limit Singularity and Recoverability

As seen in Theorem 3..1, the recoverability depends on
the solvability of the reconstruction equation (16) which
is linear in 5, which, in turn, depends on the property
of the m x (n — s)-matrix J(q). Before proceeding, the
following definition is made.

DEFINITION 4..1 (joint-limit singularity) The
configuration q is called the joint-limit singularity if
the reconstruction equation (16) is not consistent for
given Ap.

Then the following lemma follows the definition.

LEMMA 4..1 If the degrees of limitation s 1is greater
than the degrees of redundancy r, then the limitation
is not recoverable for any q.



Proof. If

rT<s$ — n—-—s<m

then the matrix J can not have full column rank. If
Ap does not belong to the column space of J(gq), then
(16) is inconsistent. B
Even if Ap does belong to the column space of J(q)
of rank less than m, the limitation is not recoverable
since then the configuration is necessarily kinematically
singular. By definition, the kinematic singularity was
precluded from being recoverable. To show that the
latter case reduces to kinematic singularity, assume that

. n—s ok
Jag=S a3
k=1
This yields
-d

5 )
by arranging d = (dy, - ,dn-,)7. In view that the
matrix has same row rank to J, and that the null vector
of the matrix has independent variables Ag (i.e. if Ag
is fixed, then d is determined.), then we can see that the
null space dimension is same as that of Ag. Since Ag
has s independent elements, the null space of J should
have dimension s, which is greater than the normal null
space dimension r. Hence, there follows the conclusion
that J is singular. [ |
The following has been also proved in proof the above
lemma.

0-TFaq-Td=[7 3](

COROLLARY 4..1 The null space of J has the dimen-
sion max {r, s}, if the reconstruction equation (16} is
consistent. #

Now it is obvious to see that Proposition 3..1 is an im-
mediate corollary to the above one, since in nonredun-
dant manipulator r is always zero. Hence the degrees
of limitation s is greater than r, if nonzero.

Now we are in position to state the following lemma,
which states that the solvability of the reconstruction
equation depends only on the configuration when a lim-
itation occurs, not the velocity. Noting that the joint
limit singularity directly concerns the solvability of the
reconstruction equation, there follows

LEMMA 4..2 The joint-limit singularity depends only
on the configuration q when the limitation occurs.

Remark 4..1 Note that the recoverability consists of two
conditions, i.e. the solvability of the reconstruction
equation (16) and the feasibility of the adjusting velocity

q. Hence, the joint velocity, or the joint velocity lim- -

itation error AqQ, affects the feasibility of q. That is,
the deeper the limitation, the less feasible the adjusting
velocity. In terms of joint-limit singularity, we can say
that the limitation is recoverable at configurations only
if the configuration is not joint-limit singular.

Based on the lemma, the joint-limit singularity can
be analytically characterized by the configuration de-
pendent criteria as in {5].
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Figure 1: Limitation analysis in joint coordinate

5. Geometric Analysis of Joint Limitations

To grab a physical interpretation of the method, we
present a geometrical analysis for a simple case where
n =3 and m = 2, i.e. 7 = 1. Assume that ¢ is an in-
verse kinematic solution without joint limitation being
considered, and one joint, say third joint, is limited.

The situation is depicted in Fig. 1 with respect to the
standard joint coordinate consisting of e(!), e(®), and
e®, where e(*) is the vector with 1 at k-th element,
and zero otherwise. Usually the velocity ¢ is obtained
as a sum of the particular and homogeneous velocity,
i.e.

q = qP + (Ih

as shown in the figure. A portion of the feasible region
is also drawn. Since ¢3 is limited, the closest feasible
value of g5 is taken as a substitute to construct a limited
solution a The error analysis is not so direct, and it is
difficult to know how to find a reconstructed solution.
Even it is not easily determined whether the limitation
is recoverable or not.

Now a new coordinate, called net/null coordinate,
consisting of {r(), r(® n()} is taken, where 7(*) (k =
1,---,m) is the k-th column vector of the R matrix,
and n®) (k = 1,---,7) is the k-th column vector of
the IN matrix. As shown in [4], any joint velocity § =
(41, +,gn)T in the standard coordinate is represented
as

. 4T .T T . . . . T
q= (qnet7 qnull) = (Qnet,ly"';Qnet,my Qnull,ly"'y(InuU,r)

with respect to the net/null coordinates.
transformed to each other by

In the above, the m-vector ¢,,, is called the net veloc-
ity, and the r-vector q,,,, is called the null velocity. !

They are

Qnet

17
Qnunt ( )

g=[ Rla) N(q) ](

ISame terms are used to denote N and Q,41- However, the
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Figure 2: Limitation analysis in kinematically decou-
pled coordinate

The net and null velocity q,,.; and §,,,;; is in one-to-one
correspondence with the task velocity and null velocity
in the kinematically decoupled coordinate, respectively,
by each nonsingular square coordinate transformation,
that is

J(Q)R(q)qnet n Z(Q)N(Q)Qnull (18)

By taking a coordinate transformation to the
net/null coordinate, the situation in Fig. 1 is repre-
sented by Fig. 2. Since the figure shows the direction
of e®, the limited solution ¢ is taken along the e(®,
as scen in the figure. By definition, any reconstructed
solution should have g,,, of g as the first m elements
in order not to induce a task motion error. In view of
this fact, the recoverable solution set is a \gector on the
lines denoted in the figure. The limited solution q is
not such, so it induces a task motion error Ap and also
a null motion error An. It is not difficult to sce that
the solution ¢ is such that whose direction is the same
as the lines defining the boundary of the feasible region,
hence the reconstructed solution ¢* by (16) and (15) is
the one located at the intersection of the plane defining
a feasible region boundary

p = =

43 = g3

and the line defining a set of solutions which does not
induce task motion error

e -
Qnet = dnet-

It should be noted that the reconstructed solution is
indeed the one with the minimal null motion error, de-
noted by A ..

A general case where r > 1 and/or the null velocity
is parametrized with a weight matrix W can also be
understood by similar interpretation. The geometrical
construction of the reconstructed solution can be gener-
alized in the multiple redundancy case. We can see that

ambiguity does not arise in the sequel. If one minds, then the
latter is properly called the joint space null velocity.
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the solution reconstruction is equivalent to finding an
intersection of a plane and a line. In this case the prob-
lem is reduced to the one regarding an intersection of a
r-dimensional hypersurface and a n — s-dimensional hy-
persurface. The r-dimensional hypersurface is define by
the constraint equation of p = J¢, and in the net/null
coordinate it is represented by
q;et = "Inet' (19)
This surface is called the inverse kinematics manifold.
The n — s dimensional hypersurface is defined by the
feasibility condition, and it is represented with respect
to the standard joint coordinates by
4 =4;, Vi=ki, ks (20)
and it is called the feasible boundary manifold. Two
manifolds are well defined. They are indeed hypersur-
faces, because each can be represented as a point, line,
plane, cube, and so on, depending on the dimension
defined above.

However, this geometrical method is not so appealing
since it is not systematic. Unfortunately, the method
itself can not give a unique solution. To see this, if
r = 2 and s = 1, then the intersection constitutes either
a line or a plane in generic cases. A systematic method
resolving this kind of multiplicities based on a sense of
optimality is additionally required, which is the main
subject of the next section.

6. Reconstruction of Limited Solution

The general reconstruction algorithm parallels the
derivations in previous sections. Now assume that the
degrees of limitation is s, and k;-th joint is limited for
eachi=1,---,s. Then the errors due to the limitation
are computed by
Ap=TAg ARy = ZWAq. (21)

Also, it is assumed that r > s to guarantee recover-
ability, and the configuration is not joint-limit singular.
The recoverability is based on the reconstruction equa-
tion rewritten below

Jq=Ap. (22)

Since J is a mx (n—s) matrix and it is assumed that r >
s, (22) is consistent. If r = s, the equation determines
a unique solution ¢ € R"~* by

~ =1 .

qg=J Ap. (23)
Hence if the solution by (15) is feasible, then the solu-
tion reconstructs the limited solution. _

However, when r > s, there exist many ¢’s to satisfy
the equation. A scheme to choose a unique solution
is required and we aim to choose the unique solution
which minimizes the null motion error involved in the
solution reconstruction. That is, one solution which



minimizes “Ahwi H is attained as the unique solu-
Tec
tion. For formulation, the null motion error is

An iy~ ZWE
ZWq-ZWq - ZW4q,
ZWAG - ZWq

An ZwWq.

W%,rec

wi (24)

Thus the problem to resolve a unique solution to (22)
is reduced to the following linear-equality constrained
least-square problem

find a solution ’c';* € RS
which minimizes

HZWE - Dy ” (25)

subject to
Jg = Ap.

The solution is well established and one form is found
as (3, 5]

—~

& = Jap (26)

— 1 —_
+ 2w (1-373)] (an, - zZW3"ap).
All the pseudoinverses used in (26) are those of full row
rank matrices, and they can be calculated by

At = AT (AAT)—I . (27)

Note that it is solvable if (22) is consistent, and further-

more if rank —~ is n — s, then the solution is

unique and has minimal length property. Hence if the
solution by (15) from (26) is feasible, then the solution
reconstructs the limited solution. It is worth comment-
ing that the reconstructed solution is indeed the one
which minimized the possible null motion error.

Remark 6..1 There is a possibility that the recon-
structed solution ¢* by the proposed method happens to
be unfeasible, since ¢ may make any of originally fea-
stble joints limited. In this case, the degrees of limita-
tion is increased by the number of newly limited joints.
Hence, the calculation should be iterated again. The
multiple degrees of redundancy will find usefulness in
such cases. Note that the number of iteration is at most
r. If it does not find a reconstructed solution within
T times of iterations, the limitation is not recoverable.
Also, during the iterations, all the matrices J, Z, W,
and RW_%, and NW_% are fired, whereas a number

of clumns of the matrices .7, .7, W, and W are added
or eliminated to and from each matriz. We propose the
following step-by-step algorithm:
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i : calculate ¢ by (9), and set ¢* = ¢

ii-a : if ¢° is not limited, go to step i.
ti-b . else do the followings:

1i-a : calculate d and f

iii-b : solve g by (26)

iti-c : reconstruct ¢* by (15)

tii-d © go to step ti-a.

The numerical simulations according to the above algo-
rithm can be found in [5].

7. Conclusions

In this paper, we analyzed the general properties of
Joint hardware limitations for redundant manipulators.
Two most important concepts introduced are the re-
coverability, and the joint-limit singularity. Next, we
proposed a reconstruction method by solving the recon-
struction equation (16) and adjusting the feasible joints
by (15). Note that if the joint configuration is not joint—
limit singular, then the joint limitation is recoverable if
the adjusting velocity is feasible. The method moti-
vated by the failure recoverability results in the unique
solution minimizing possible null motion error.
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