Proceedings of the 11"
KACC, October 1996

EXTENDED IMPEDANCE CONTROL OF REDUNDANT MANIPULATORS

°Yonghwan Oh”, Wankyun Chung*™ and Youngil Youm™

* %

“Graduate student, School of Mech. Eng., POSTECH
“~Associate professor, School of Mech. Eng., POSTECH and ARC
***Professor, School of Mech. Eng., POSTECH

Tel: +82-562-279-2844; Fax: +82-562-279-5899; E-mail:ovh@risbot.rist.re.kr

Abstracts

An impedance control approach based on an extended task space formulation is addressed to control the

kinematically redundant manipulators. Defining a weighted inner product in joint space, a minimal parametrization of the
null space can be achieved and we can visualize the null space motion explicitly. Based on this formulation, we propose
a control method called inertially decoupled impedance controller to control the motion of the end-effector as well as the
internal motion expanding the conventional impedance control. Some numerical simulations are given to demonstrate the

performance of the proposed control methods.
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1. INTRODUCTION

Consideration of task space dynamics is essential for
higher performance of manipulators especially when the
control of the end-effector motion is combined with that
of contact forces[1, 2, 5]. For kinematically redundant ma-
nipulators, even if the dynamic behavior of the end-effector
can be described using the task space formulation, there
is a hidden dynamics which can not be observed in task
space[2]. In order to achieve given task, the null motion
should be controlled for redundant manipulators as the sec-
ondary task.

To control the redundant manipulator utilizing the re-
dundancy, many results are available in literature(3, 4, 6].
One of the most popular method is the configuration control
method[3]. Using this approach, many compliant control
schemes are proposed[5, 6]. However, they do not consider
the null motion or null dynamics. It was firstly noted by
Hsu et al[4] and T. Tsuji and A. Jazidie[7] proposed an
approach to utilize the redundancy within the impedance
control framework. But they failed to parametrize the null
motion with a minimal set.

In this paper, an extended impedance control meth-
ods for kinematically redundant manipulators are presented
based on weighted decomposition of joint space. The
impedance control approach is employed to control the mo-
tion of end—effector and modified resolved acceleration con-
trol method is used to control the internal motion. Those
results are simulated with a planar three link redundant
manipulator.

2. MODELING OF MANIPULATOR

For an n-DOF serial manipulator operating in m-
dimensional task space, the kinematic relations can be ex-
pressed by

Ok(q)
dq

h(g.4) £ J(g.4)d

e=J(q)q, J(g) = (1

&=J(q)q+h(q,9), (2)
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where J € R™*" is called the manipulator Jacobian matrix
and for kinematically redundant manipulator, n > m and
r =n — m is called the degree of redundancy.

Dynamic equations of motion in joint space is described
as follows

T=H(q)§g+n(q,9)+J (9)f, (3)

where 7 € R" is joint torque vector; H(q) € R™*" is joint
inertia matrix; n(q,q) € R" is the nonlinear torque and
f € R™ is the contact force exerted by the end—effector on
the environment.

When we consider the motion and force control of the
manipulator, it is more convenient to express the dynamic
equations in the task space form as follows[2]

(4)

where f, € R™ is a fictitious force applied to the end-
effector of the manipulator, A(q) € R™*™ is called the
pseudo-inertia matrix[2] and # € R®™ is the nonlinear force
vector in the task space. Eq.(4) can be used to describe
the motion of end-effector, however, it is not complete to
describe the manipulator’s configuration.

f.=Aa@)& +n(q,¢)+ f,

3. NEW EXTENDED TASK SPACE FORMULATION
In this section, we present a new extended task space
formulation of redundant manipulators based on joint space
decomposition.

8.1 Kinematic Decomposition

Let us assume that g and & belong to a vector space
Q C R" and X C R™, respectively. According to the type
of manipulators, each component of ¢ may have different
physical dimensions and even if the components are physi-
cally consistent, the joint limits may be different from each
joint. To resolve this, the inner product in Q is defined by
a metric W as follows:

<q;,9, >w = Q?Wlha vVg,,q,€Q (5)



where W € R**™ is a symmetric positive definite matrix.
Based on the above, general solution of Eq. (1) can be
obtained as

a=q,+q,=Jhz+ (I - JHJ)E, (6)
where J}, is a weighted generalized inverse defined by
-1
Jh =w T (.IW‘lJT) (7)

and € € R is an arbitrary vector in Q. Commonly,
q,, g, are called the particular and homogeneous solutions
of Eq. (1), respectively. The particular solution g, is related
with the task space motion and the homogeneous solution
g, is related with the null space motion. However, the ho-
mogeneous solution is not a minimal set to specify the null
space motion. Since

Q=R (JT) SN ()

and R(JT) can be characterized by &, only r—dimensional
vectors are necessary to specify the null space of J. Let
V(q) be a full column rank matrix in N(J), z.e.,

J(@)V(g) = 0.

Since ¢, € N(J), it is possible to define r velocities &
7:531\f,r]T € Xy such that

(8)

[.iN,1,...

@, =In—JHJ)E=V(g)en = Zi'N,i'Ui~

=1

(9)

It means that the homogeneous velocity q, can be repre-
sented by a linear combination of v; with a magnitude of
in,;. Using Egs. (6) and (9), we obtain &y € Xy as follows:

-1

i (VTWV> VvIwWg 2 In(q)q. (10)
where the linear mapping Jy : @ — Xy is defined as the
null space Jacobian matrix. Since &y is not available gen-
erally, the control of null space motion can be regarded as
the velocity tracking problem.

Now, define an extented task space &g as follows:
o7 ]

Then the extended task space kinematics can be written
using proposed minimal representation as

. T
rp —

(11)

zp = Je(g)q and Jg = (12)

I~

If the manipulator is not in singular configuration, the ex-
tended Jacobian matrix J g is always invertible.

8.2 Dynamic Decomposition

For redundant manipulator, n—joint torques are applied
to the manipulator. Since for m kinematic equations it is
necessary to supply only m independent constraints forces
f. and f_ are related with 7 = JTfC. However, if the
redundant manipulator is not held at static equilibrium, it
can not be satisfied because of the internal motion. Let us
define f, € F~ as a null space force vector which gives
rise to null motion & without producing any work along
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Fig.1 Motion and force decomposition of redundant ma-
nipulator

. Augmenting the task space force f, and null space force
fw, define f .. as follows:

fr=[sT 1)

Then we obtain the following relation from the virtual work
principle:

(13)

Pre-multiply the above equation by VT, we get Fn
Fyn=Vi@r (15)

From the above analysis, we can decompose the joint ve-
locity vector ¢ into the task space velocity and null veloc-
ity with minimal representation, respectively. Similarly, the
joint torque vector T can be decomposed into the task space
force and the null space force as shown in Fig. 1, where the
vector spaces Xy, Fn C R and X, F C R™.

Now, we can reformulate the equations of motion of the
redundant manipulator in terms of the task space and null
space variables, explicitly. It can be easily shown that

Fee=Ae(@)de+n:(q,9) + fg, (16)
where
JYTHJE JITHV
Ag=Jz;"HJz;! = |"W W TW (17)
VTHJI}, VTHV
ng=J5 n(q,q) — Ae(q)he(q,q) (18)
. _ h(q,q
he(q,q)=Jeq = ( ) and fp = at (19)
h~(q,q)

It should be noted that clever choice of W can reduce the
inertia matrix A g to the block diagonal form, i.e., inertial
decoupling of the task space dynamics from the null space
motion.

4. EXTENDED IMPEDANCE CONTROLLER

Typically the term impedance control refers to a control
approach that implements some desired dynamical relation
consisting of some inertial, damping and stiffness parame-
ters. Consider the desired impedance relation in extended
task space as follows:

afp = Mgpiép + Briér + K rae, (20)



where Mpyq, Beg € 7" and Kgg € R*™™ denote the
desired mass, damping coefficient and stiffness matrices in
the extended task space, respectively, and « is a force scaling
factor which will be described later. Since &y is not defined
in general, K gq is not a square matrix. el = [éT é?;],
e=xy—x and ény = Tng — TN, Brpqs and K gq are given
by

0 K,

BEd = and KEd = s (21)
0 By 0

where By, K4 € R™*™ and By € R7*". From Eq. (20),
we obtain the following command input force in extended
task space:

fre=Ar(q){Epd + Mg} [Braer + Krae — af 5]}
+ne(q,4) + fi (22)

In early impedance control works, it was assumed that an
arbitrary desired impedance could be emulated. Recently,
however, Newman[5] demonstrated that it is impossible to
emulate an arbitrary set of target impedance and achiev-
able dynamic behavior has a limiting performance. His
stability condition in impedance control approaches uses
the desired inertia matrix as the real inertia matrix, i.e.,
M g4 = Agp(q). Although this choice of M g, gives an iner-
tial coupling in Cartesian motion, it can reduce the compu-
tational burden(8] and it is necessary to satisfy the passivity
condition[5]. In this case, however, the force feedback term
disappears in conventional impedance controller form and it
becomes an equivalent stiffness controller(5, 7, 9]. The force
scaling factor « is inserted for this reason. As mentioned in
[5, 9], for stable contact with environment, the force scaling
factor o should be less than 1. With this choice of Mgy,
we can restate the command force fp. as

Fec=Ae(@){&ra —he(q,q)} + Beaér + Kgae

+(1—a)fp+JE n(q.4). (23)

In real implementation, the joint torque vector can be par-
titioned into three terms as shown in below:

T=71p+ 71Ny +7n(q.q) (24)

where T7p and 75 depend upon the weighting matrix W.

4.1 Inertially Decoupled Impedance Controller (IDIC)

With W H(q), the weighted pseudoinverse gives
the inertia—weighted pseudoinverse, J?; J;. Since
J:Q,THV = 0 in this case, the inertia matrix Ag has the
following form:

Alg) O
0 Ax(q)

Ac(q) (25)

where A(q) = (JH_lJT)¥l and we define Ay 2 VTHV
as the null-inertia matrix.

Since the above equation has a block diagonal form, we
can consider the dynamics of each space as follows:

fo=Al@) & -hig. @)+ I n(gq)+ f
fv=Ax(@[Ex —hy(g, @)+ V n(q.q).

where hn(q,q) = J~(q.q)q. The first equation shows the
conventional operational space dyvnamics{2], however. the

(26)
(27)
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Fig.2 Desired trajectory in simulation

second equation is a new expression of null dynamics based
on the proposed minimal parametrization. Note that the
external force f has no effect on the null motion. Although
there is nonlinear coupling term, we call this type of con-
troller as the inertially decoupled controller.

Based on this formulation, the impedance control ap-
proach can be applied to the above two equations. It is
named by “inertially decoupled impedance controller”. The
input torque has the following form:

7p =J7(q) {A(@)[Ea — h(q, )] + Bae + K e}

+(1-a)J"(g)f
T~ = H(Q)V(q) [Exa + Bvén — hy(q,4)]

(28)
(29)

with By = 3vAn~(q).

5. SIMULATION

A three-link planar redundant manipulator is considered
in simulation. The kinematic and dynamic parameters are
computed from the CAD drawings of POSTECH DDArm-
IT which is now under construction. The sampling frequency
is assumed as 250Hz and integration step is taken 100 times
faster than sampling frequency to emulate the continuous
system. We investigate the performance of the proposed
control methods on the general class of task, i.e., free mo-
tion and contact/constrained motion. The primary task of
the manipulator is to follow the circular trajectory. Fig. 2
shows the desired Cartesian trajectory and the initial con-
figuration of the manipulator. The desired trajectory is a
circular motion which centered at (0.45, 0.0) with radius
of 0.25m and it is planned by a fifth-order polynomial of
time. The total time of execution is given by 6s and the
vertical wall which is located at x = 0.65m is considered
as the environment. For simplicity, the friction force is not
included and the linear contact force model is assumed, i.e.,
fr = K.éx, where the contact stiffness K. = 200, 000N /m.

We use the following impedance parameters to control
motion of the end—effector

a =08 Bg=60I, and K ;= 900I» (30)
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Fig. 3 Impedance control performance of IDIC

and @y is given by yg = AR VT Vim(q).

In addition to this primary task, a secondary task
which is to optimize a scalar potential function is assigned.
Though we can use the impact minimizing index[8], for con-
venience, the desired null motion trajectories are given by
the manipulability measure as previous case. The initial
Cartesian position of the manipulator is (0) = (0.2, 0.0)m
and the initial joint configuration is chosen by integrating
the following optimal condition

(In—J"J)Vm(g) = q,

until g, becomes zero. The null motion control parameters
are given by x = 100 and Sy = 20.

Fig. 3 shows the simulation results. Fig. (a) and (b) show
the Cartesian position and velocity profiles. From the fig-
ures, we can find very small Cartesian motion tracking error.
In Fig. 3(c), the null motion tracking performance of IDIC is
depicted. There is no abrupt changes of null motion profile
due to the impact as mentioned before. And Fig(d) and
(e) show the measure of manipulability and torque profile
during the task execution. Finally, Fig. (f) represents the
normal contact force.

6. CONCLUSION

To control the end-effector as well as the null motion,
an extended task space formulation of kinematically re-
dundant manipulators is considered in this work. Based
on the weighted inner product in joint space, a minimal
parametrization of the null space can be achieved. Aug-
menting this and kinematic equation, the extended task
space formulation with explicit null motion dynamics is
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constructed. Expanding the conventional impedance con-
trol approach, the inertially decoupled impedance control
method was proposed. The effectiveness of the proposed
control approach was verified via numerical simulation.
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