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Mixed H,/H. Controller Design Considering Minimum Entropy

Sang Hyuk Lee, Jin H. Sco

School of Electrical Engineering, Seoul National University

Abstract: In this paper, we represented the relation of
minimum  entropy/ He~controller and  mixed k Hy/ He
-controller. An H, controller design problem involving a
constraint on H. disturbance attenuation is considered. By
the equivalence of the mixed Hy/ H. control problem and
the minimum entropy/ Hu.~control problem, we presented the
controller state-space realization. Decentralized case was
illustrated briefly.

1. Introduction

Entropy has established itself as an important notation,
with a wide applicability in a number of diverse subjects,
information measure, used in spectral analysis. Mustafa
showed the entropy of a system which satisfies an Ho
-norm bound, and derive some important properties, entropy
is an upper bound on H, cost, and interpret the H.-norm
bound on the system as proving a proving a prespecified
Jevel of robustness,

Recently mixed H; and He optimal control problems
have received a great deal of attention{Bernstein and Haddad,
1989; Mustafa, 1989; Mustafa and Glover, 1988; Mustafa and
Glover, 1990). Mustafa and Glover(1988) solved the problem
of maximizing the entropy of a stabilized closed-loop system.
‘The solution exploits the parameterization of all closed-loop
systems that meet an Ho-norm bound. And they showed
that the central solution of this set is shown to maximize the
entropy at infinity. Bernstein and Haddad(1989) considered the
case of one exogeneous input and two observed outputs,
They used Lagrange mulliplier technique, and under the
assumption that the order of the controller is specified, they
derived a necessary condition for minimizing an upper bound
of the Hy-norm of one transfer matrix, subject to an He
-norm constraint,

In Chapter 2, we formulate the problem, and define the
entropy and auxiliary cost. In Proposition 1, we illustrated the
controller realization which solves the minimum entropy/ He
-control problem, Decentralized mixed problem is extended in
Chapter 3. Some conclusion is contained in Chapter 4.

2. Statement of the Problem

Control problem addressed in this paper concerns the
finite-dimensional linear time-invariant feedback system
depicted in Fig. 1.
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Fig. 1. The closed-loop system.

2.1 centralized case

Consider an w-state plant F with a state space
description:

() =Ax(§) + Bou{ ) + Bl i) )]

2= Cp()+ Dpu(f) 2)

()= Cx( ) + Dyyuld), (3)

where x{f) &€ R" is the state variable, u{{ represent
external input. 2()e R™ is the error output, #(f) € R™
and ¥WH & R" are the control input and the measured

output.
In input-output form, the system can be represented as

2] o

u P(S}{u]’
where the transfer function P(s) will be written in packed
matrix form!

A B, B
p;:{Pll Plz]= C: 0 Dyl
Py Py C Dy 0

In the following, we assume that
Al (A, B) is stabilizable and (C, A) is detectable,
A2) DLDy = 1 DyD} = 1

A2) [AE‘AI 53‘ and [A EA, g;] are, respectively,

full column and row rank for all A, A+ A =0.

- 999 -



Connecting an n-state fecdback controller K(s), with
state~space description:
Z ()= AxL)+BxN), @
(= Caxld). 6]
We denote H(K(s)) = H(s) the closed-loop transfer
functions of the system when using compensator K{s).
Closed-loop transfer function from w to 2z, as follows:

H(s)-=[§ OD]
with state-space description

= A7+ Dw, ®
2= B3, m
’7"[2]-3'[31:0 icj' Da[be'ﬂ], E=[C, DyCl.

Definition 1. The entropy of the closed-loop transfer
function F{s), for a tolerance 7 such that [H(f.<?, at

an arbitrary point spe(0, 0], is defined by
KH. )= tim = [ inldet= 528 GG
. 5o :
[T—‘“so—m ] da
where H'(s)=HT(~3).

The minimum entropy/ H.-control problem. Find, for the
plant F, a feedback controller K such that

(i} K stabilizes F,
(i) The closed-loop transfer function H{K(s)) = H
satisfies the Ho-norm bound [[H{leCy, where

re R is given,
(iii} The closed-loop entropy X H,?) is minimized.

Definition 2, The auxiliary cost associated with H(s), where
HH <y, is defined by
J(H,7: =T Q,ETE)
where Q,>0 is the stabilizing solution of the algebraic
Riccati equation
2Q+Q AT+ 2QETEQ+ DD =0,
The mixed H,/ He. control problem. Find, for the plant

F, a feedback controller K such that:
(i) K stabilizes F.

(i) The closed-loop transfer function H{K(s)) = H
satisfies the Hu-norm bound |IF{llwr, where
re R is given,

(iit) The auxiliary cost J(H, 7) is minimized.

Definition 3. Quadratic cost O(H)= E.'P.E[ PR OT.0)

= [ H13.

Remark 1 Quadratic cost () is  achieved
()= TAQETE] when y—oo, Where 0 is
the solution to the Lyapunov ecuation:

A0+ AT+ D=0

The H, control problem. Find, for the plant F, a feedback
controller K such that:
(i) K stabilizes F.
(ii} The H, cost C(H) is minimized.
The entropy gives us a guaranteed upper bound on the
actual quadratic cost(Bemstein and Haddad, 1989). Ha.
~constrained Hj control problem is to determine controller
(4) and (5) which satisfy the following stability condition,
H.~constraint, H performance.
Closed loop system stability : closed loop system is
asymptotically stable,
Hu~congtraint © closed loop transfer function from u 1o 2
satisfies the constraint

HH(Mo<y {(8)
where )0 is given constant.
H, performance : functional

KALB,C)m m [xTRyx+ uT Ry} )
is minimized. Where R, R; are weighting matrix.

22 The mixed Hw/H> controller

The solution of minimum entropy/ Hw~-control problem,
express the controller and minimum value of the entropy in
terms of the stabilizing solution to two algebraic Riccati
equations. Whereas the solution of the mixed Hy/ Ho~contral
problem, express via three modified Riccati equations. But by
the result of Mustafa {1989), the mixed Ho/ Ha control
problem and the minimum entropy/ H~control problem are

equivalent, we present the controller state-space realization
which solves the above mentioned two problems,

Proposition 1. Controller which solves the minimum entropy/
He~control problem takes the following state-space
realization:

K7w LY(sI— A+ M]C+ MC,+ BL]— M{DpLD ~'M}

. | A= M{C—-M}C,~ BLI+ MIDpL] MY]
| b o

where M" = [M] M§] = [YCT+B.DS —7*Y'C]],

0 o= AT-CTD,BT  y3CTC,-C7 X
— BoBI+ B DIDyBT ~A+B.D}C
Y’ = Ric(HY,

DiC.+BTXY

e[ )o@ ] 4O

Hy = A-BDRC, y*B.8l-BB" .
-CTC,+ CIDpDYC, — AT+ CID,BT
X? = Ric(HY).
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Proof: The minimum entropy controller is the central
solution in the parameterization of all stabilizing controliers
which keep ||H()llo<y (Mustafa and Glover, 1990). So
comparing the assumption with the references{Mustafa, 1989;
Mustafa and Glover, 1990), we can propose the state-space
realization as the same form{Seo, et al, 1994),

3. Decentralized Mixed H/# . Problem

Now we consider a decentralized case briefly. g-channel
stabilizable and detectable plant:

2= Ax+ ’Z“B,ﬁﬁ D, (10)
2= Fx, (11
yi= Coo+ Dy, fe{1.2, ..., gl (12)

where #; € R™ and y; € R” are the control inputs and

the measured outputs of

Y"‘g"i. mwzm,.

i-th controller of decentralized controller K, is
*oq= Agteit Bay, (13)
1= Coxoy 1= 1.2, .....0. (14)
We dencte HAK ()} = H, the closed-loop transfer
functions of the system when using compensator K{s).
Bernstein and Haddad(1989) considered the solution of the
mixed Hy/ Hu control problem via auxiliary cost J(H, %)
minimizing method. So we extend the decentralized case, in
this paper, ¢-channel controller was determined.
Forming the Lagrangian
L{A.B.C.QP,D
= Tr{AQ ETE+[AQ+Q AT+ £y *Q ETEQ+ DD 15
where the Lagrangian multipliers A20 and Pe R are
not both zero.
generality. Furthermore, P is nonnegative definite.

channel £, { = 1,2,~.0,

A=1 can be assumed without loss of

Setting %16* =)

(A+ Ay QEDP+P(A+ £y QETD+ ETE=0
(16)
Now partiion #X»# P and Q into nxn, nxs, and
n.Xn, subblocks as

Q=[Q1 sz]' p=[Pl P;z]_

Qh Q: P} P,
Q" Qz Qn * Qu#
where Quz= | Q1 |, Qq.| Q@ Q.m Qa'.'“
Qz;-n Qot1z Qorn * Qatien)
Pu " Pzr Py = Py
Pam | %2 |, pu| Pz P2 7 Pan

Piat1 Pariz Poarn * Poswnr

‘Thus, the stationary conditions are given by

OL o 2L oo 9L .n 2L .
30 =0 247 =0 35.=0 3¢ =0

Expanding AQ+Q AT+ £y QETEQ+ DDT=0 satisfies

AQ+Q AT+ BiC4Qii 41 +Qyi CIB]

+ £ 7 QETE\Q, + DDT=0, an
AQusi+ Qun AT+ BiCaQe+ Qi CTB]

+ 8y *QQETEQue1=0, (8)
AQ+ QAT+ BLCQusi +QT41 C7B]

+ 877 QR4 1 EE\Que1 + BaDyDIBL=0, (a9
And expanding equation(16) yields

ATP1+P|A+ C,"‘ng};+‘+ﬂzrazE;"El(p|Q|+P|Q‘|€+))T
+ 87 P+ Py Qe D ETE + ETE, =0 (20)
ATPy+Pin A+ CTBIP+ P BCa

+ By EE (PR Qi+ PRT+) =0 @
AlPy+Py A+ Plyy BiCat C2B Pryy=0. (22
{ = 1_2'...'0_

Conclusions

We illustrated the minimum entropy/ Hw-controller and
mixed Hof Heo-controller design problem, Both of the
controllers are guaranteed the closed-loop stability, He-~norm
bound and H; performance. Using the equivalence of the
mixed H,/ H. control problem and the minimum entropy/
He~control problem, the controller state-space realization

was derived. Decentralized case was briefly illustrated using
Lagrangian,
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