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Observer Design for Bilinear Systems with Unknown Inputs

Young Tk Son, Jin H. Seo

School of Electrical Engineering, Seoul National University

Abstract: In this paper, we considers the problem of designing
an observer for bilinear systems with unknown input. A
sufficient condition for the asymptotic stability of the proposed
observer is derived by means of detectability, invariant zeros,
and stable subspace. In sufficient condition, the bound which
guarantees the asymptotic stability was derived, which based
on the Lyapunov stability. And Observer existing conditions
are suggested in various cases. Through a simple example, we
derived the observer structure and the bound which
guarantees the asymptotic stability.
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1. Introduction

The problem of designing an observer for systems with
unknown input has attracted some attention in the literature.
Meditch and Hostetter(1973) proposed a method which
assumes some a priori knowledge of the disturbance, Kudva
et. al(1980) gave necessary conditions for this kind of
observer to exist. In Bhattacharyya(1978), a geometric
approach has been proposed. Also, Hara and Furuta(1976) and
Funahashi(1979) proposed methods which construct stable
minimal-order observers for bilinear systems.

We suggest various sufficient conditions for existence and
asymptotical stability of bilinear observer by means of
detectability, invariant zeros, and stable subspace, according to
the relations of mecasurement and unknown input. And we
propose a perturbation bound to guarantee the asymptotic
stability of the observer.

2. Observer for Bilinear Systems with Unknown Inputs

Consider a particular kind of bilinear systems with unknown
inputs:

H)=[Ac+ T s AD+[Byt & a (OB
+Di( )

(LD

w() = Cx(B), (1.2)
whepe  x()&R", w(DeR’, uwHeR™ and UNER’, are
state, input, output and unknown input, respectively:

P= (L imm),  S= (L fma )i Ay, AER™"
By, BieR"* DeR™® CeR™", p{) and af)) are
input or time-varying components lying within certain bounds,
b < PO < B, iel, @1
o <ald <4, jel 22)
Without loss of generality, it can be assumed that D has full
column rank and C has full row rank.
For the system (1.1), (1.2), an observer which reconstructs
the state x(f) without the knowledge of the unknown input
o(#) is constructed as follows!

) = [Fot Zp0F D +[Got ZaOGIl) 3y
+[ Lo+ 'ZE:II?.(’)L.']W(l)

xl =2~ Ewll), (32)
where z(DER", r{)ER" F, F.€R™ G, GeR"™
Ly, L&R™™ EeR"™"

Define the estimation error (£} = x(£) ~x({). Then,

oy = 1.0 — (D
= [Fy + E pAD File(d)
+[Fy=(EC+DAy+ T p(Fi— (EC+ DAY 110
+[Gy —(EC+ DBy + % o) (G, —(EC +NB)1KY
+[ Lo+ FoE+ T pl )L+ FiB)]uk ) = [(EC + DDIAD).

Since e(f) is required to converge to zero irrespective of
(), E is chosen to satisfly the relation:

(EC+IYD = 0. 4)
Let P =EC+] Ly:=Ly+FoE, and Li=L;+FZE.
Then, with a choice of E satisfying equation (4),

) = [Fo+ Z oD File))
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+{Fo=PAyt+ LC+ A0 (Fi=PA+ T,00(0)
+[Gy—PB,y+ g,a;(l) (G;—PB)l).
If Fo, Fi, Gy Gj, Lo and L; are constructed such that

Fy = PAy + (Lo +FEXC = 0, (5)

F; = PA; + (Li+F;E)C = (,ie}, (6)

Gy — PBy = 0, )]

G, —- PB; = ¢,je], 8
then, for all #{#) and a{0,

dd=[F+ glo,( D Fed). 9

3. Construction of Bilinear Observers

First, E is chosen to satisfy equation (4) and Fy and L,
are constructed to satisfy (5) while F; remains stable. Next,
F, L, iel, Gy and G;, j=J are constructed according
to (6), (7}, and (8). And to guarantee the stability of
Fy + ;Eﬁ,(!)F,- for chosen Fy and Fi f€l, we regard
§p,(l) F; as a perturbation and propose a condition on
24D to ensure the stubility of Fy + 'g! LD F;.

In the following, it is assumed that
rankCD = ¢, ¢ < m, (10)
which is necessary and sufficient condition for the existence
of E satislying equation (4). And let R =J~D(CD)*C.

Theorem 1 : Assume that rankCD = g < m. If (C,RA,)
is detectable, then there exist £, Fy and Ly such that
equations (4) and (5) are satisfied and Fy is stable.

Proof: If

E = -D(CD)*, an
then equation (4) is satisfied and P becomes R. Therefore,
(C,PAg) is detectable, which implies the existence of an

Iy such that PAg— I,C is stable. Now F and Ly are
constructed with this fo as follows:
Fy = PAy—~ I,C,
Ly = Ly — FyE.

(12)
(13)

If P is chosen, then equations (6}, (7) and (8} can be
satisfied by F,, L;, Gy and G; constructed as follows :
F; = PA, iel, (14)
L,' bl "FiE,l'Gl, (15)
Go = PBo, (16)
G = PB,je]. an
Theorem 2 | Assume that rankCD = g < m. I all the

invariant zeros of the system (C, Ay, D) have negative real
parts, there exist E, Fp and Ly such that equations (4) and
(5) are satisfied and Fy is stable.

Proof: Suppose that a complex number A corresponds to an
uncbservable mode of (C, RA). Then, there exists a

nonzero vector x & R such that
[ H "l RAQ]
c

xe=0,

or eguivalently,
[%2% 2\ corenge) =
C Dll(cD"CAx !
which implies that

rank [’U‘E‘Ao gl { n+gq.

Since ¢g<m, A is an invariant zero of the system
(C, Ay, D). Hence, if all the invariant zeroes of the system
(C. Ao, D) have negative real parts, then (C,RA,) is
detectable and the assertion follows from Theorem 1.

Next, W := D(CD}*C is defined.
Then,
I=R+W,

R = RI-W) =R, W= (I-RW=W.
Therefore, R and W are projection operators on R".
Hence, a direct sum decomposition of R”" results:

R = ImR @ ImW, :

From the definition of W, ImW C ImbD.

Since WD = DXCD)*'CD = D, ImW D ImD.

Hence, ImW= ImD,

and another direct sum decomposition of R”* is obtained:
R = ImR @ ImD.

Theorem 3 : Assume that rankCD=g=m. (C,RA,) is

detectable if and only if the stable subspace of RA, contains

ImR.

Proof: Since rankCD =g =m, (CD)* becomes (CD)~",
CR = C(I-DXCD)™'C) = 0,

Hence, the observabitity matrix of (C, RAg) becomes

(18)

c c
W= | CRA | = 10}
C( R/i “)n-l 6
which implies that KerW, = KerC. On the other hand,
from {18), KerC D ImR. Since q=m,
dim(Ker Q) =n—m and dim{(ImD)=m. Thus it follows
from the direct sum decomposition of R®  that

dim(ImR) = n — m, which implies that KerC = ImR
Therefore KerW, = ImR, that is, the unobservable
subspace of (C,RA) is oqual to ImR. Hence (C,RA,) is
detectable if and only if the stable subspace of RA, contains
ImR.

eux{M) and Guin(M) denote the

maximum and minimum singular values of the matrix M,
respectively.

In the foliowing,

Theorem 4 © Let Fp be stable, Q be positive definite and
symmetric, and H = HT be a solution of the Lyapunov
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equation,
FIH+ HFy + Q = 0,

Then, F, + § LD F; is stable for all p{f) satisfying

(19

2 azmm(Q)
Z a1« gi,o’m("?h' THRy Y @
Proof: Since Fy is stablee H is positive definite A

Lyapunov function We) = e’ He is introduced. By the
Lyapunov stability theorem, () is asymptotically stable, if
there exists €)> 0 so that

e < —clell, Vi @1
It will be demonstrated that equation (20) implies equation
@). Let Qi:= FTH + HF,.

V(e)= e[ (FTH+ HF )+ g’p,{o( FTHYHF)le

=—eTQe+e’[ g'm( 0Qie.

It follows from equation (23) that there exists a positive
number & , € € Onn(@Q), such that

(22)

(Z 1201 U oo QN < 0@ ~ &, V1. (@)

“ Applying the following inequality

Frrax § 200Q) < E( 15i() | omax (Q2)

< (g | 2L 1 B ( :2;: QN (24)
it follows that
Oma( & HLDQ) £ 0 Q) — £, VU (25)
Since
Cuin(@lel} < " < 0 | e} }, (26)
| ™ Z 2(0Qdel < o X p(0Q) Vel § on

equation (25) implies equation (21}, which completes the proof.

4, Example

Consider given system,
-2-20
Ao=l 0 1 1 l,
0 -3 ~4

1 2
Box{g],B,zlg , C=[102], D=2 ~2 117

In this case, rankCD =g = m, Thus this case satisfies
the necessary and sufficient condition for the existence of E
satisfying equation (4). Under this condition, the solution to
equation (4) is given by E= [ ~0.5 6.5 —0.5]7, and P is

0.5 0 -1
05 11 ]

obtained by definition, so P=i
~-0.25 0 0.5

(C, PAy) is detectable, which implies that there exists an
L, such that PA;~— LyC is stable. With this choice

of Lo=[3 ~33]7, Fy and L, satisfying equation (12),
(13) are

-4 2 -2
Fa-[ 2 =33 ]. elg(Fy)=-9, -2, -4,
-25 -1 -8

Lo== [~0.5 0.25 0.25] ".
With this construction of Fp and Lg, eguation (5) is satisfied
and Fy is stable. By constructing F;, L), Gy, G, equations
(6), (7) and (8) can be satisfied.
-05 -1 1
Fi=105 0 -—1]L={050-025}"
0.25 0.5 —-0.5
Go= (0505 -0.251", G=1(11-05]"
By the above result, observer for the bilinear system with
unknown inputs is constructed as equations (3.1), (3.2).
And by the Theorem 4, we evaluate the bound on p,(#)
which guarantees the stability of Fg + p,()F,.
In case of Q=1 H satisfying equation
FIH + HF, + Q= 0 is
0.1894 0.1101 -0.015

0.1101 0.2292 0.0326 |.
—0.015 6.0326 0.0785

Perturbation |91{)|? satisfying equation (23) is
aZ n\in(Q)

PN NN
A (FTH + Hiry 12956

H=

5. Conclusion

An observer for the bilincar systems with unknown input
was proposed. Design of bilinear observer was also derived.
And observer existence condition was checked by detectability,
invariant zeros, and stable subspace And a sufficient condition
guarantecing asymptotic stability of proposed observer was
also derived, which is based on the Lyapunov stability
theorem, And a simple example is illustrated. Through this
example, we derived the observer structure and the bound
which guarantees asymptotic stability of proposed observer.
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