Annual Conference on Human and Language Technology (한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리))
- 1995.10a
- /
- Pages.137-142
- /
- 1995
- /
- 2005-3053(pISSN)
Structure-Adaptive Self-Organizing Neural Network : Application to Hangul Character Recognition
구조적응 자기조직화 신경망 : 한글 문자인식에의 적용
- Lee, Kyoung-Mi (Dept. of Computer Science, Yonsei University) ;
- Cho, Sung-Bae (Dept. of Computer Science, Yonsei University) ;
- Lee, Yill-Byung (Dept. of Computer Science, Yonsei University)
- Published : 1995.10.07
Abstract
코호넨의 SOFM(Self-Organizing Feature Map)온 빠른 검증 학습이 가능하여 다층 퍼셉트론의 단점을 보완할 수 있는 패턴분류기로 부각되고 있다. 그러나 기본적으로 고정된 크기와 구조의 네트워크를 사용하기 때문에 실재 문제에 적용하기가 쉽지 않다는 문제가 있다. 본 논문에서는 패턴에 대한 사전 정보없이 복잡한 패턴공간을 적응적으로 분할하기 위해 구조적응되는 자기조직화 신경망을 소개하고 이를 인쇄체 한글 문자의 인식에 적용한 결과를 보여준다. 여기에서 제안하는 신경망은 SOFM의 각 셀이 좀더 자세한 SOFM으로 확장될 수 있도록하며, 확률분포가 0인 셀을 제거함으로써 패턴 공간에 보다 근사한 분류를 가능하게 한다. 실제로 이러한 방식이 한글과 같은 복잡한 분류 문제에서 어떻게 작동하는지 설명하고, 한글 완성형 2350자에 대해 실험한 결과를 보여준다.
Keywords