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Abstract

In this paper we study steady capillary-gravity waves in a two-layer fluid bounded
above by a free surface and below by a horizontal rigid boundary with a small obstruc-
tion. Two critical speeds for the waves are obtained. Near the smaller critical speed,
the derivation of the usual forced KdV equation (FKdV) fails when the coefficient of
the nonlinear term in the FKdV vanishes. To overcome this difficulty, a new equation
called a forced extended KdV equation (FEKdV) governing interfacial wave forms is
obtained by a refined asymptotic method. Various solutions and numerical results of

this equation are presented. .

1. Introduction

We consider a two-layer medium of immiscible, inviscid and incompressible fluids having
different but constant densities. The medium is bounded above by a free surface and below by
a horizontal rigid boundary with an interface in between (Fig. 1). The surface tension effect
is taken into consideration at both the free surface and the interface. We assume that a two-
dimensional object is moving along the lower boundary at a constant speed, and in reference to
a coordinate system moving with the object, the fluid flow is steady. Two critical speeds are
obtained. When the object is moving at a speed near either one of them, an FKdV for steady
flow can be derived and has been extensively investigated in [1] and {2]. We note that numerical
studies of steady flow of a two-layer fluid over a bump or a step bounded by a free or rigid
upper boundary were carried out by Forbes [3] and among others, and an asymptotic approach
for the case of a rigid upper boundary was developed without surface tension by Shen [4] on the
basis of the FKdV theory, and with surface tension by Choi, Sun and Shen {5], where a forced
modified KdV equation (FMKdV) was obtained. The FKdV theory fails when the coefficient of
the nonlinear term or that of the third derivative in the FKdV vanishes. In the case considered
here, when the wave speed is near the smaller critical speed for internal waves, the amplitude
of which is larger at the interface than at the free surface, the coefficient of the nonlinear term
in the FKdV may vanish. Furthermore, at a wave speed near either one of the critical speeds

the coefficient of the third order derivative may also vanish. To overcome the difficulty of a
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vanishing nonlinear term in the FKdV, we shall develop a refined asymptotic method to derive

a new equation , called the forced extended KdV equation (FEKdV), in the following form:
(F173 + Fame + F3)maz + Fithaze = —Fsbs,

where F; to Fs are constants depending on several parameters and z = —H ™ + b(z) is the
equation of the obstruction. The objective of this paper is to investigate solutions of the FEKdV,
which represent possible interfacial wave forms. We remark that when the coefficient of the third
order derivative in the FEKdV vanishes a forced perturbed KdV equation with a fourth order
derivative could be derived, and is deferred to a subsequent study. In Section 2, we formulate
the problem and develop the asymptotic scheme to derive the FEKdV. Section 3 consists of
two subsections. The éupercritica.l case of F1F; > 0 and the subcritical case of F1 Fy < 0 are
studied in Section 3.1 and 3.2 respectively. In general, we can find three types of solutions. The
first-type solution consists of symmetric solitary-wave like solutions. The second-type solution is
one which is a part of a free solitary-wave behind the bump and a periodic wave solution ahead
of the bump. The free solitary-wave is a solitary- wave solution of the extended KdV equation
without forcing. By a third-type solution we mean a solution which is constant behind the bump
and periodic ahead of the bump. In many cases both second- and third-type solutions do satisfy
the conservation of mass even if they do not tend to zero far upstream. In both sections 3.1
and 3.2, analytical and numerical results, which indicate the appearance of various types of
solutions, are presented. It is found that four branches of first-type solutions can appear in the
supercritical case and there are no first- and second-type solutions in the subcritical case. The
third-type solutions appear in both supercritical and subcritical cases. In both cases symmetric
solutions without a periodic part are embeded in the third-type solutions at discrete values of a
parameter, and a hydraulic jump wave solution appears as a limting case of third-type solutions

in the subcritical case.

2. Formulation and Successive Approximate Equations

We consider steady internal capillary-gravity waves between two immiscible, inviscid and
incompressible fluids of constant but different densities bounded above by a free surface and
below by a horizontal rigid boundary with a small obstruction of compact support. The domains
of the upper fluid with a constant density p** and the lower fluid with a constant density p*~
are denoted by Q** and Q*~ respectively (Fig. 1). Assume that the small obstruction is moving
with & constant speed C. In reference to a coordinate system moving with the obstruction,
the flow is steady and moving with the speed C far upstream. The governing equations and
boundary conditions are given by Euler equations.

We define the following nondimensional variables:

e=H/L<<1l, m=cq{/H™, m=c'n3/H", pt =p*/gH""p"",

(z,2) = (ez*,2")/H"~, (u¥,w?)= (gH" ) V2 (u*E ¢ttty
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pr=p"t/p"" <1, pm=p"[p"" =1, U=C[(gH")'/?,

T;i=T /p* gH™", i=1,2, h=H*Y/H*" b(z) = b*(z)(H*~)!,
where u** and w** are horizontal and vertical velocities, p** are pressures, ¢ is.the gravitational
acceleration constant, T} and T are surface tension constants at the free surface and the interface
respectively. L is the horizontal scale, H is the vertical scale, b(z) = b*(z)(H*~¢%)"!, H** and
H*~ are the equilibrium depths of the upper and lower fluids at z* = —oo respectively, and
z* = —H*~ +b*(z) is the equation of the obstruction. In terms of the nondimensional quantities,

the above equations become in fluid domain,

wrwi=0, (1)
viuf + w¥ul = —pF/p*, (2)
Eutwt + fwtwt = —pF/pt -1 (3)
at z=h +en,
P+ = _€3T1 7)1::/(1 + 6477%1-)3/27 (4)
ewtn, —wt =0; (5)
at z = en,
U —w” =0, (6)
eutm, —wh =0, (7)
p+ - p_ = €3T2772xz:/(1 + 6477%;;)3/2 ) (8)
at z = —1 4 b(z),
w” = Sub,, (9)

where b(z) has a compact support.

In the following, we use a unified asymptotic method to derive the equations for 7;(z) and
n2(z). We assume that u*,w®, and p* are functions of z, z near the equilibrium state u* = ug,
wt¥ = 0, pt = —ptz+pth and p~ = —p~z + pth, where ug is a constant, and possess

asymptotic expansions:

(uE, wE, p%) = (40,0, —pF 2z + pth) + e(ud, wi, pi)

+ E(uf, wi, pf) + S, v, pf) + 0(e*). (10)

By inserting (10) into (1) to (9) and arranging the resulting equations according to the
powers of e, it follows that (ug,0,—p*z + pth) are the solutions of the zeroth order system

of equations. The equations of first to third oder terms of ¢ are also given and by solving

- 128 -



the equations according to the orders we obtain the following time independent extended KdV

equation with forcing term:
Fln§n21+’\l7]2772x+’\2772$+F4772:m:x+F5bx_—-07 (11)

where F; through Fj are constants. The coeflicient F} contains parameters T; and T; and F3
contains a parameter A. Since F3 and Fy change signs as A and T; vary, (11) has different types

of solutions for different cases of T; and A.

3. Extended KdV Equation with Forcing

The sign of FyF determines the existence of solutions of (11). In the following sections,
the two cases Fy Fy > 0 and FyFy < 0 will be considered separately. We remark in passing that
if the surface tension constants Ty and 75 satisfy F; = 0 for given p and h the coefficient of the
third order derivative vanishes and a forced perturbed KdV equation could be derived to replace
the FEKdV equation.

3.1.  Supercritical Case ( F3F; >0)

We can investigate the behavior of solutions ahead and behind the bump by using elliptic
ingetral and show that the solution of (11) always exist over the bump in this case, and a global
solution of (11) can be constructed. In the following, we use numerical computation to find
various types of solutions of (11) and the equation for the bump is given by b(z) = (1 — z?)!/?
for —1 € z < 1. We devide these solutions into symmetric solitary-wave like solutions, which
are first-type solutions, and unsymmetric solutions, which consist of second- and third-type

solutions.

(I) Symmetric solitary-wave like solutions

By using shooting method, we can find a symmetric solitary-wave like solution of (11) whose
values ahead and behind the bump are given by a solitary-wave solution. The numerical results
are presented in Figs.2-3. Four typical solitary-wave like solutions corresponding to A; = —1
and A2 = 4 are shown in Fig. 2. In Fig. 3, we show the relationship between 7,(0) and \; with
A1 = —1. We note that for certain pairs of (A1, A2) no solitary-wave like solution can appear.
(II) Unsymmetric solutions

The numerical results are presented in Figs. 4-7. Fig. 4 shows the second-type solutions which
have solitary-wave solution as their solutions in (—o00,—1]. In Fig. 5 we show a second-type
solution whose mean depth of the wave ahead of the bump is -7y (—00). We also consider third-
type solutions which are equal to H, for £ < —1 and periodic for z > 1. Fig.6 shows a typical
third-type solution whose mean depth ahead of bump is ~7;(—00). An interesting phenomenon
appears in the process of computing third-type solutions. At discrete values of X, there are
symmetric solutions without a periodic part embedded in the third-type solutions and Fig. 7
presents such a solution. In Figs. 2-7, we choose p = 0.2, h = 0.6, \; = —1, T} = 2.8 and
T = 4.
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3.2. Subcritical Case ( FyF; <0)

The same assumptions as in 3.1 are given in this section. The only difference here is
F1 Fy < 0. Here we choose 7, = H, in (—o00,27) since a solitary-wave solution does not exist
for (38) when b(z) = 0. It can also be shown that (11) possesses a solution with a continous
second order derivative in {z7,z*] in this case, and by using the matching process as before,
we can find the solution for all real x. We present the numerical results of global solutions
in Figs. 8-11. Fig. 8 shows a typical third-type solution and Fig. 9 shows a hydraulic jump,
which is the limiting solution of the third-type solution as A; being decreased and tending to
some critical value. Only unbounded solutions are found when A, is decreased further below the
critical value. We also find multi-troughs symmetric solutions without a periodic part embeded
in the third-type solutions at discrete values of A;, even though no first-type symmetric solutions
exist in the subcritical case. Figs. 10-11 present two such cases. In Figs. 8 to 11 we choose the
same p and h as in Figs. 4 to 7, but A; = 1 and T} and T3 are equal to 10~2. The obstruction

i1s same as before.
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