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Abstract

This paper deals with 3-di ional missife guidance law. This p
the general optimal solution of the state equahnn which mdudcs llm target
mnncuvenng as the Gauss-Markov processing.

The main resuits are about the tronstonnation between the Cartesian
coardinates on which both the guidance law und the liiter are based and the
polar coordinates system in real missile guidance and radar measurcment
mformation. And the oxtended Kalinan filter and adj of the estimuted

_ Coe s r
LRI 5 T A N A W |

U

[T I T S |
where

X,. ¥,. z, denote the relative target §

s ¥y

ininertial i and

Apgr Ay, Ay, are target manenvering aceeleration,

fyis the identical mateix of dimension 3, A, 4, 4, are the missile

target accelerntion by triangular lunctions is proposed solution to this
transformation problem.
1t is shown that this proposed tmnsionn'mon is valid in real 3-di ional

feration, o d the target handwidih, and wr is Gaussian white noise.

For the system given by (2.1), the oplimal input minimizing the

i 4, problem by the P

B

. Introduction

For a maneuvcnng target, APNG is known to be more effective than pure

guid (PPNG) and APNG is derived lrom the

imcar q\mdmtlc gnussum {LQG) control method in Cantesian coordinates [ 1},

1t is worthwhile to pay ion to the 1 fies on the goid law
using guidance law in two ways,

First, Paut{2] introduced the four kinds of target maneuvering model und
constructed the gnidance Jaw using one of model in the form of the c\!cnded
Kalmen filter and linear optimal puid: input including the infi
not only of the position and velocity but also of the (nrgei maneuver
acceleration, Since, however, the Kalman filter and optima) guidance law are
presented in Cartesian coordinate system, the result is not applicable to the
real guidance system which needs the normal acceleration command 1o steer
the missile.

Second, Tang(3} desit with this problem directly in polar coordinate
system using the extended Kalman filter for simplified modet and time-
varying optimal guidance law. The shortages of this solution are that this is
Yimited to 2-dimensional pitch plane and that the optimal guidance law is the
direct solution for the only one case of finite time LQ problem, so if applied
to another case this solution falls into a sub ) one.

The controf of missile contains originally the polar nature: axial thrust and
two angular rates. In addition, the filtering problem also does from the fact
that the information from the radar consists of mngu, c)cvauon angle ond
azunmh xmgle ln dealing with the three di i problem, the

quation in polar for gmdance Jaw and filter is
d that many appended problems arise, though missile and target
are supposcd to be point Mmasses,

The compromise between these lwo acgessing ways can be the one using
guidance law and filter in \he form of Cartesian coordinates and then
transforming them to the polar coordinates form, This method has u merit of
easier geability and realizability compared with the former candidate.

This paper concentrates on this topic, and shows that this access can
guarantee a good result without handling the complicated nonlincar control
and filtering technique.

2. Review on Optimal Guidance Law
The relative dynamic equation in Cartesian coordinates between missile
and target is given by

[V [4 [}
£=10 0 1, lx+l=f,lu+| 0| 2.1)
0 ¢ ~a o w,

pertt index

J=X ()8, x1,) + f’n'nu & 22
where

S, =diag[C 0 0]

and R is a appropriate positive definite matrix,
is given by

u, = AL} {,\; i1, +%.4,, :,’] 2.3)
where 1, denotes time-to-go defined by
=t,~1, 2.4)
and A is the navigation ratio defined by
l . -t
l\a(;u( R':,’) . 2.5)

In the procedure of derivation of (2.3), the assumption of the small
correlation of the target maneuver white noise L.,

) {2.6)
is needed.

3. APNG in Polar Coordinates

Figure 1 shows the relative position of the two ohjects. Point Af denotes
the origin of inertial li which ponds to missile position and T
is relative target position diring the guidance phase.

Now let us consider the horizomal plane geomelsy of missile-and-target in
the inertial coordinates.

The azimuth angle is given by

$=tant 2 [&B)]
x

Differentiate (3.1 0 get

(3.2)
Modifying the above equation without harming the equality gives
4= AP Xy -t vE-xy
o + ¥ )N,
! 3.3
e 1, M) - (1,
T {rte, #40)=y0a, k4 )
Substitute the of | soluti btained in Seetion 2 to get
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To make this equation neater, define the ground crossing velocity as

v I eyt
* = t

. (3.5)
2
then {3.4) can be changed into
. 1 A A . 3.6
é '—AV’, {{u, 3 An]cosé— [n, —?A,., }sm é} 3.6
Since we need the lateral steering command, let
u, wu, cOSg—u, sing 3.7
Then
3.8

u,= AV, 8+ %(A,, c0sg — Ay, sing)

It is similar to the previous procedure to derive the equation for lateral
plane geometry.
First,

6= tan™ e
;;xl + y2
Differentinte (3.9) 1o get
be ~zXE gy P+ (x} +y2)z" (3.10)
x? +y2 (T’ +y’ +x’)
Modifying the above equation by adding the nulf term, we obtain

[€R5]

#= i —-—{—l ZxE—t2yp- “z(x? +v)
tyidst + 3.1n
1,0y 2(x} +,v’)}
where
f'm;~ 3.12)

Arranging (3.11), we get

P i
G e lmd X(X 41, X ~2y(p+ 1, P)
r,r’:;x‘ +* { ' ¢

+(x7 4y )z +e, z‘)}
Substituting the optimal results into (3.13) we get

5 1 A A . (.14
f= —A—‘Z{—{u, -?Abllanacosqi -{u’ —7A,,}tan gsing

+ [u: - ~~2A—A,,x :’cos() }
where V¥, isclosing velocity defined by
v=pft,. (.15
Like the way used in the derivation of (3.8), we define the lateral steering
command
1, %~ (1, €03 + u, sin $)1on & + 11, cosO. (3.16)

Then we obtain the lateral steering command for APNG in inertial polar
coordinates as

(3.13)

S A
W= AV,0+'7HA,, cosg+ Ay, singytan 0 + Ay, cos) . .17y

Whereas to implement the result of Section 2 one must know the exact or
estimated time-to-ge information, (3.8) and (3.17) can be applied without it.
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Figure 1 Relative Position in Incitial Coordinates
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4. Extended Kaiman Filter

In real implementation, the radar secker gives the target information in the
form of polar coordinates such as range between missile and target, elevation
LOS angle and azimuth LOS angle, so it is not avoidable that the linear
states are combined in nonlinear form in the measurement as follows:

= mn"( /\/x ! @b

45 Jun(y,/x)

On this account, the filtering technique must be included in the
guidance law design, and we can think of the extended Kalman filter #s the
ensicst method with optimality.

The noise model used in this simulation follows Paul[4] and some
modification are annexed. The covariance of the modeled measurement noise
is

R =E {v{ V(}

25 025 “
.dmg[;o (--—+55 lO’)xS (—-+56x10")x5]
e 7

where diagonal terms denote the noises applied in the range, elevation angle
and azimulth angle, respectively.

5. Simulation

The number of scenarios used in this simulation is two, and in each
scenario we asswme that the target flies with velocity of 300 mvsec and that
the missile velocity is constantly kept 700 m/sec. The launching of missile is
omitted. The detailed scenario are arranged in Table 1, where the *N’, ‘E’
mean *north of, *east of* the origin, and ‘H' means the height of the object,
The “El’, ‘Az’ stand for the ‘clevation” angle and h' angle with
respect to the north, respectively.

In Section 2, we did not consider the time delay effect of airframe in the
course of derivation of the optimal cotrol law. In this simulation the
airframe dynamics including the missile autopilot is modeled in the case of
STT missile. Since we have not concerncd about the detailed missile

‘ ics and the calcul: conlml inputs are given in the fonn of pitch
and yow normal lerati dently at the beginning, the BTT
missile whose dynamics for yaw and pitch channels are coupled is not
appropriate.

In [11), the aerodynamics including accelerometer is proposed, which will
be adapted in this simulation with the same perameters and the transfer
function from the d normal 1 to the real output
acceleration is given by

a, «1083(s+2) s +3441)s~344]) 6.
U (51965 +1358)s* + 37485 +483081) :

From f{inal value theorem, the steady-state gain of (5.1) is 2. This problem
can be solved simply by applying the half of calculated command input.

The results of 30-times Monte Carlo simulation are listed in Table 2.
Since we set the missile and the target as point mass, thinking of the sizes of
the both, the miss distance within filleen meters can hurt the target seriously,

In Figure 2, the plots of RMS error of the estimated target acceleration in
Cartesian coordinates and the error of LOS rates between the missile and the
target are listed. Since the ervors in each scenario do not much differ, only
the ones for scenario 2 are selected, Though the EXF is a approximate filter
of the nonlinear system, it shows the reasonable results.

Figure 3 show the trajectories of the two objccls in t!m:e dlmcnswmi
space, where the thiner lines reg the 1 of trej ies. It can
be easily known from Table ) which line rcpmsems missile or u\rgct

Figure 4 show the relative position trajectory in APNG that is the one
thought of by the missile. We can get the fact that while APNG tries to keep
the missile {lying straight toward the target which is the cause of smaller
miss distance in APNG.

“Table 1 Twe Scenurios for Shnulation

Parameters Scenario 1 Scenario 2

Initial Missile Position (km) [H:1 H:1 |

Initial Missile Velocity Angle [E1:40°, Az -26° {El: 30 Az:-26°
Initiat Target Position (km) IN:10,E:5,H:7 IN:IO.E 5 H:S
Initial Target Velocity Angle TE1: 0°, Az 180*  [El: 10°, Az: 210°
Target Maneuver Acceleration |70 m/sec? 60 m/sec’

Target Maneyver Angle IE{ 1 20°, Az :-120° {E1:40°, Az: 100°

Target Maneuver Time {rom 4 to 8 seconds {from 3 ta 12 seconds
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6. Conclusion

The solution for the missile guidance problem which includes the target
maneuver and the existence of noise has been proposed using LQG control
method. To cope with not only a constant velocity target but also a target
with nccelem(mn. it is needed for the target mancuver acceleration to bhe

in g puter. It is shown that one of the possible and easy
way is using  APNG in the sense of optimality.
One of the obstacles that linder a straight access is the problem of

£ jon bet: di system: Cartesian and polar. While

mation 1wo
the output of the secker and the mpul exerted on missile is given in the fonn
of polar di the i ,‘ of optimal lilter and the solution of
APNG, as already known, is easily solvahle if’ the problem is based on the
Curtesian coordinates.

Instead of tackling nonlinear optimal control and filtering subject, the
modilication of the results in Cartesian into the polar form has been
suggested throughout this thesis. One for filtering is the usage of the
Extended Kalman filter, and another for optimal contro}, the main result of’
this thesis, is the adjustment ol target maneuver acceleration using sinusoidal
functions to get normal maneuver accelerations with respect to LOS. In this
stage, wherens the former result requires the time-to-go information which
cannot be easily obtained, the proposed guid law is readily realizable
with the Extended Kalman filter.

The simulation shows that APNG guarantee the miss distance less than
twenty meters for the two scenarios.

For the Extended Kalman tilter, though it is a approximate of a nonlinear
system, the EXF shows a reasonable estimates llu. errors of LOS and target
maneuver acceleration.
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Table 2 Table of RMS Misy Distunce

Method: Proposed APNG
Scenariol 12.76 m
Scenario2 16.19 m
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Figure 4 The Relutive Trejectory in Scenario2



