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Differential Game of Approach with an Inertial Evader
and Two Noninertial Pursuers
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Abstract. This paper is concerned with a coplanar pursuit-evasion
gare of one inertial evader and two identical noninertial pursuers.
The terminal time is fixed and the payoff is the distance between
the evader and the nearest pursuer when the game is terminated.
The value fufctions and the strategies is constructed for all the
game surface. To get a value function, we use the generalization
of the Bellman-Isaacs fundamental equation.
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1. Introduction

Diffrential games which treat many pursuers and evaders is
not only an interesting problem but also an important subject
which can be applied in many situations. It has been studied
extensively from the past. In the present paper, we consider one
evader which can be accelerated to any directions with constant
acceleration and two pursuefs which have the same constraints
each other, that is, each pursuers can move any directions with
constant velocity. Evader wants to maximize the distance between
itself and pursuers, but pursuers hope to approach evader to catch
evader within the terminal time. The game is played on the plane
and terminal time is fixed.

In the diffrential game under consideration, the value function
coincide with the programmed maximin function, which is a
continuous, piecewise-smooth function. But in this game, there is a
dispersal surface. S0, we can not use the Beliman-lasscs
fundamental equation, because on this singular surface, the value
function is nondifferentiable (Ref. 1). To prove the fact that this
programmed maximum function is the value function of the game
under consideration, we use a generalization of the Bellman-Isaacs
fundamental equation (Ref. 2)

After proving that the programmed maximin function is the
value function of the game, we construct the value function and
strategies for all the game surface which is subdivided into four
domain. In Section 2, the game is formulated and in section 3,
game surface is subdivided and the programmed maximin function
is defined. In section 4, all the values of the game and strategies
is constructed. All game is considered in the first quadrant. The
other quadrants have the same attitude,

2. Problem Formulation

The motion of the evader F(x) is described by the equations

Xy =Ky, L=, =21, =1, (1a)
And, pursuers Pz’ is described by the equations

. . .

zi=u, 2=, =1, Z=ul (ib)
The control vectors of the evader and the pursuers are

constrainted as

[0 + (o)<, [ +(ud?)2sp, i=1, 2. (o)
Game is played in the time interval [f,, 8]. The terminal time 8
at which the game ends is fixed. The payoff functional o is the
distance between the evader and the pursuer closest to it ot the
time instant &) ie.,

o= min [{(z} () -2 (D F (2 (D—x(H]VE @

As can be seen at {1a)~(1b), this model has eight states. It
is exactly what we want to treat in this game, but too complex.
So we introduce the change of variables, ‘

yi=x;+ (0~ 0%4s, i=1 2
with reference to the region of attainability of the inertial evader.
The state equations (la), (Ib) and {ic) are changed as,

n={(0-v, y1=(6=Dv,, (3a)
y{ty) = x{ly) + (O~ 0x;45(8y) 3
o= min[(¥(8) ~2,(M)?+ (35 (0) —z,(* V2 (3c)

The y state is the center of the attainability region at which the
evader can reach in terminal time #. The changed payoff (3c) is
the same value to the original payoff (2).

Let us introduce & moving coordinate system (gy.4). We
direct the axis ¢, from the position of the first pursuer Py(2') to
the position of the second pursuer Py(2?). And we direct the
ordinate axis @, through the midpoint of the segment { Py, Pyl
perpendicular to it (See Fig 1). The dynamics of the states of
relative coordinates is described by the following differential
equations.

*=(0— 0 — (uf + )2+ —u})[22 (4a)

y=(0=Dvs—(u} +1d)/2 ~ (14 —u})/22 (4b)

2= (ud—ul}/2 (4c)
Constraints on the control of the players coincide with (le)

Lo + (o) P20, () + (]2, i=1, 2. U4d)
The payoff functional is

o=[(A ) -1 B +57(H] V2 (4e) °

In the system (4), the vector v = (v, 1) is abschte
velocity of the evader E, and the vectors #' = (u, u}) are the
proportional to the velocity of the pursuers P; with the factor
#—1 In this system, the point (x, y) is the position of the
evader and (0, %t2) is the position of each pursuers, Clearly
(%, ») is the relative velocity of the evader £ and Z is one halfl .
of the relative velocity of the pursuer in the moving coordinate
system (g;, 42). Game is played using system (4a)~{4de). Let us:
define  &(t, (), W(#)) as the position of the evader and'
t{t, (D) as the positions of each pursuers at time £

At time fy, which is start time of the game, let us freeze
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the axis (. ¢2). We will call this coordinate as a fixed
coordinate system (3, #72). All trajectories and game values will
be displayed in this coordinate system. The domain of attainability

Gy, 0 of the evader from the position &(ty, (1, (&) at
the instant @ is a circle of radius (%)= M §—1,)%/2, with center

at the point &t x(fy, X%)). The domain of attainability
Ci(ty, ) of the pursuers from the position Cdf, 2(fy)) is a
circle of radius R(#)=p(8—4), with center at the point
Lty 2(1)). Al positions and the domains of attainability are
displayed at Fig 1.

=
®
x
w

2

Fig. 1. Moving coordianate system,
3. Partitioning the Game Domain

At the instant £, the evader L is located at the position
£ty x(tp), ¥1p)) and the attainability domain G,(t,, 0) of the
evader intersect the axis ¢, at the point A {0, d)) and
Ay 0, &) if attainsbility domain is sufficiently large. Then
following two cases are possible:

() the quadrangle P,A,;P,A, does not exist, or

£(ty, x(ty), Wt einl P\APRA,)
(D) &to, *tyy, M) EInK PLAPA).
Case (i) is occured when the following condition is satisfied.(Fig.2)

cos By 2cosdy, ie,
W02 (el 1) ) 2 ®
The situation correspond to case (ii) is described by the opposite
inequility.

By the inequility (5) we can get a three dimensional domain,
D", In this domain the game is restricted to one pursuer-one
evader game because the availability of the second pursuer is not
beneficial, Only nearest pursuer at initial time and evader play a
role in a game. In case (i), by chaging the inequility in equation
(5), a three dimensional D” is constructed. DM and DP is
saparated by S). In case (i), the value function, ¢, is defined as
following, o

pl=pl, Kty Aty Ay & DO
3.1 One to One Pursuit Evasion Game

When evader's position, &(f, »(8, W()), is in D", we can
subdivide this region inte DR" (regular domain) and DS"
(singular domain). The regular domain, DR" is constructed if the
following equations

(E— )2 =20t — X O~ ty~pufv) —2dfv=10 6a)

d=[(z=1)*+5]"? (6
do not have roots in the segment [y, 8] (see Appendix AJ.
DS" is made by the other condition, ie., the equations (6a), (6b)
have roots in {#), 0]. Clearly the equation (6a) always have a
one real root which is larger than #. So, the root must have

smaller value than # if evader is located inside the domain DS,
The surface Sy is a boundary between the subdomain DR and

DS". If evader is located at the surface Sy, not only evader has

the same position with pursuer but also has the same velocity at
the terminal time 6. If evader is located in DR™, pursuer nerver
catch evader for any terminal time.

Let y" is the programmed maximin function of the one to

ong game,

7" = max( 7, 0) (7a)

2
5 [t - 45 V2 = BB ooty e

3.2 Two to One Pursuit Evasion Game

When evader is positioned in DP(case (i), its optimal
strategy is diffrent from the case (). D? is also subdevided into
the regular domain, DR®, and the singular domain, DS®. If the
equations
(= )2 ~2(1— 1,8 —t, — psin By/ vsin ag) ~ 23 1)/ vsinay = 0 (Ba)

sinag=[ VE~2(1)1 VY V (85
in B = ¥ty) +a{f)tan oy

sin By = [{{ty) +I(io)tanao)2 +25 (1)) 7% (8¢)

V=uo-w'2 D

do not have roots in the segment [f;, f], then the evader is in
DR, ie, pursuer can not catch evader permanently (see
Appendix A). The other case is DS®. If the quadratic equations
(8 have a root in {f, 6] ‘then two pursuers will catch the
evader within the final time instantaneously. The surface S; is the
boundry of the regular domain, DRY and singular domain, DS,
If the evader's initial position is located at surface Si, pursuers
catch evader in terminal time & and they have the same speed
with evader. At D', we denote 7' is the programmed maximin
function of this game. 7' is defined as follows:
™= max{r, n 0} (9a)

where 7;, k=1, 2, are smooth functions, defined via the
formulas

n={2 () +af] "2 —u(8-14) (9b)
ay= W) 2L (v (0— )4 22 = (1)} 2 (90
All domain is shown in Fig 3.
LA
A
A £ L1

Fig. 2. The positions of the evader and pursuers,

¥

L3
Fig. 3. Structure of coordinate space on the plane (x, y}
for p=3, v=1, =3, z=5

4. Value function and strategy

The programmed maximin function in the domain D" is the
value function of the game. In the domain DS", value function
has a zero value, trivially. As can be seen in section 3, the

-214-



programmed maxmin function 7* is the value function in the

domain TP, Finally the value function in the region DS* thas
zero value, also,

At the surface §), value function can be defined as 7" or

7. They have the same value in S'. The value function of the
all the game surface is defined as

, 7, {(neleD!
p={ A, {t.elel? e
rlor P, {t5es, .

The strategy is diffrent according to the position of the
evader. If the evader is located at one-to-one game region ( D'),
the strategy of the evader and the nearest pursuer are defined as

vy = veos 6y, Uy == psindy, (11a)
u}= psinédy, ul = psindy. (11
sindy= (x{ty) —2(t)) / [ (1) —2(t)* +5* 1] V? (110
cos 8o = y(1) / { (a(tg) ~2(£))* +55(ty} V2 11

and the other pursuer's moving is not concern. When evader is
located at two-to-one game region (™), the strategy of the
evader and each pursuers are defined as

v} = yeosdg, U= vsinay, (12a)

ups=—id = pgingy,  uh= = psing, (12b)

singy=[ V222131 V¥ v (12¢)
. _ y(fo) +x(f,})tanao

0= Ty +atanay 2] 7 (2
Vs o 01 2 ' (120)

The surface S| which divides D' and L™ is the barrier between

two diffrent strategy. The one-to-one strategy is simple. At DY,
it is a optimal strategy that evader and pursuer move direct lfine
passing each other. When evader is in DS?, it is optimal for
evader to be catched by two pursuers instantaneously and in
DR®, it is optimal that evader is positioned at a same distance
with each pursuers when it is catched. So evader move toward the
point A, {or A; if it is located below the g, axis. see Fig 1),
and each pursuers also move toward the point Ay (or A,).)

The value of the game in the all game domain is described
at Fig 4. The other three quadrants has exactly the mirror image
of the first quadrant.

"

m“/,,./-v- W’M
e
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~

L
Fig. 4. Isocost lines of the game.

5. Conclusions

In this paper, the game of an inertial evader and two
noninertial pursuers is solved. The value function of the game is
found by using the programmed maximin function. The strategy
and value function are constructed for all the game surface. The
game surface is divided into an one-to-one game region and a
two-to-one game region. Each region is again subdivided into a
regular domain where it is impossible for pursuers to catch evader
end a singular domain where pursuers can catch evader, In each
fegion the game is played with diffrent strategies and game
values.

The singular surface is also described. When™ evader is
located between two pursuers, evader’'s trajectory toward each
sides makes dispersal surface.
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Appendix A

(I} Finding.the Capture Region in the Qne to One Game

In one to one game, the evader and the pursuer nearest to it
move always on the line connecting each other. For the pursuer to
catch the evader, it must be satisfied that they are located at the
same position within the terminal time. Equation (Al) is denote
this condition (see Fig 2. to get a more graphical appreciation).

the distance between the evader and the pursuer
+ the total moved distance of the evader to time ¢
= the total moved distance of the pursuer to time 1 (Al)

t 3
d+ L (0~ Dhudr= L dr (A2)
where
d=[(2(ty) (1)) +5* (1)1 Y2, (A3)
Expanding above equation {Al),
%(l—:.,)z—»(t—t.,)(t?'—l»—%)—d={) (A9)

(A3}, (Ad) make equations (Ga) and (6b).

(I Finding the Capture Region inthe Two to One Game
In this case, situation is somewhat diffrent. The evader
moves toward the extremal point A, (or A,) and each pursuers
also move toward that point(see Fig. 2). At this situation, we
consider the projection of the evader and the pursuer to the
axis. I two projections of the evader and the pursuer coincide,
pursuer can catch evader within the terminal time. Let us denote
these as equations.
the projected distance fo the evader and the pursuer
+ the projected total distance of the evader to time ¢
= the projected total distance of the pursuer to time £ (A%)

It + ﬂ(ﬂ— udrsingy= f;ﬂdrcosﬁo. (A6)
where
singy= [ VF—2()] V¥ V. (AT
o M) +x(fp)tanay
i o= T3y +attan gy + 225 7 a8
V=K0-1)% 2. (A9)

Expanding shove equation (A5),

F (=t sinay — At~ 1) 0~1tp~ —ﬁ;ﬁ—f‘f)sma‘, It =0.(A10)

(A7}~ (A10) make the equations (8a}~(8d).
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