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1 Introduction

The model for the combined refraction and diffraction of water waves, the so-called mild-slope
equation, was first developed by Berkhoff (1972) and has been studied by many coastal engineers
because the model is able to consider the combined effect of refraction and diffraction of water
waves and eliminate the problem of ray crossing which may happen in the previously developed
ray theory.

The time-dependent mild-slope equation was first developed by Smith and Sprinks (1975) by
using the Green’s formula and, as an equivalent model, a canonical form of the time-dependent
mild-slope equations was developed based on the Hamiltonian theory of water waves by Radder
and Dingemans (1985). On the other hand, Kubo et al. (1992) developed another type of time-
dependent mild-slope equation by expanding the terms in the Berkhoff’s equation into Taylor
series in Aw and substituting a term with Aw by a time-dependent term. The linear dispersive
properties of the time-dependent equations were verified by Kirby et al. (1992) and Kubo et al.
(1992), who showed the propagation of wave groups using the Radder and Dingemans’ model and
Kubo et al.’s model, respectively.

In the aforementioned models, the mild-slope assumption Vh/kh << 1 (where V = horizontal
gradient operator, h = water depth, and k¥ = wave number) was made so that the terms of
O(Vh)? and O(V?h) were neglected. Recently, by using the Galerkin-eigenfunction method,
Massel (1993) developed an equation which includes these higher-order bottom effect terms as
well as the evanescent modes. In the present study, by using the Green’s formula method and
the Lagrangian formulation, we develop two equivalent time-dependent wave equations for the
propagating wave mode on bottom with substantial depth variation. The developed equation is
then applied for the case of a monochromatic wave propagating over a plane slope to show its
capability for substantial depth variation.

2 Derivation of the wave equations

2.1 Green’s formula method

In the classical linear theory of water waves, the velocity potential ¢(z,y,2,t) for waves with
angular frequency w is governed by
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with the dispersion relationship w? = gk tanh kh. From the fact that the constant depth solution
is the leading order solution for slowly varying depth, the velocity potential ¢ for the propagating
waves can be described as
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where f(z,y,2) is determined by the local water depth and wavenumber. Applying the Green’s
second identity to f and ¢ as

¢(1',y,2,t) = f(z’y’ z)q~5(z, y’t) =

o0 ( 8% o*f 3¢ af°
/_h (f@ - ¢ﬁ) [f az) s (5)
and using (1) - (4) gives
2
00 9-(CC9H) + - KCCYI-g (191 Vhat [ VP as)d=0 ()

where the terms in the last parenthesis are of order O(Vh)? and O(V?2h) and were neglected in
the equation of Smith and Sprinks (1975). Here, we keep these terms to include the effect of
substantial bottom variation. Using the following relationships
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after a lengthy algebraic manipulation, we obtain
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The expressions of W;, U;, and I; are given in the appendix. For a monochromatic wave, the
model equation becomes
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which is the same as the equation developed by Massel (1993) except minor algebraic errors in
the Massel’s equation.

2.2 Lagrangian formulation

The variational principle governing irrotational fluid motion is given by (Luke, 1967)

6[LLL (z,y,t,qS,ng,g—f,n) dydzdt = 0 (13)
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or the integral of the Lagrangian L over all space and time is stationary with respect to small
variation. Luke (1967) gives
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Retaining the terms in second order in the Lagrangian L, we get
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The stationariness of L with respect to 7 gives
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which is the linearized dynamic free surface boundary condition. The stationariness of L with
respect to ¢, after integrating by parts the fifth term on the right side of (15) and using the
Leibnitz rule, gives
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The last term in the preceding equation is equivalent to the last term in '(6). Therefore, the
preceding equation can be written as

on CcC,

=" (59)+
Equations {16) and (18) constitute a canonical form of time-dependent wave equations on bottom
with substantial depth variation. The terms in the last brace of the preceding equation are of
order O(Vh)? and O(V?2h) and were neglected in the equation of Radder and Dingemans (1985).

The surface displacement 7 may be eliminated from (16) and (18) in order to obtain (9), proving
the equivalence of the two models which are developed in different methods.
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3 Conservation of wave action

The validity of the present equation may be demonstrated by showing that it correctly leads to
the conservation equation of wave action. The function é may be defined as
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where R and ¢ are taken to be purely real quantities. The phase 1 has the following relations
with wavenumber £ and angular frequency w:
k= = - (20)
After substituting (19) into (9), the properties of R and ¢ may be used to set the real and
imaginary parts ol the resulting expression equal to zero. The imaginary part of (9) is given by
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After multiplying by R and using the fact that
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(21) becomes
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which can be reduced to the conservation equation’of wave action:
%—’: +V-(C,A) =0 (24)
where the wave action A is defined as "
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This equation has been shown to be the correct conservation relation for an energylike quantity
by numerous investigators, including Whitham (1967) and Bretherton and Garrett (1968).

4 A simple test of the model equation

By numerical computation for the reflection coefficient of a monochromatic wave propagating over
a plane slope both ends of which are connected to a constant-depth region, Booij (1983) has shown
that the mild-slope equation gives accurate results up to 1:3 slope through comparison with a
three-dimensional numerical model. Figure 1 shows the comparison among the present equation,
Massel’s equation, Berkhoff’s mild-slope equation and the three-dimensional model results. It
is shown that the present model gives reflection coefficients very close to those of the three-
dimensional model and the reflection coefficient becomes stable even for very steep slope, while
the mild-slope equation underpredicts the reflection coefficient for steeper slopes. The Massel’s
equation gives larger reflection coefficients for very steep slopes probably due to the errors in his
equation. Without the errors, the results should be the same as the present model results.

5 Conclusion

Two time-dependent wave equations to include the effect of substantial depth variation have
been developed by different theoretical approaches, but the resulting equations are shown to be
identical. For a monochromatic wave, the developed equation reduces to the Massel’s (1993)
equation for propagating wave alone. The validity of the present equation has been demonstrated
by showing that it correctly leads to the conservation equation for wave action without further
approximation. The capability of the present equation for substantial depth variation has partially
been verified by applying it to waves propagating over a plane slope with different inclination.
The developed equation is of time-dependent form so that it can be used for the propagation of
random waves though it has been tested only for a monochromatic wave in the present study. The
practical engineering application of the equation may include waves propagating over a trench,
Bragg reflection from bottom undulation, and so on.
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Figure 1: Reflection coefficient versus bottom inclination of a plane slope; + = three-dimensional
model, — - — - — = mild-slope equation, —— = present equation, - - - - - = Massel’s equation.

6 Appendix: Components of terms R; and R,
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L o= /_ * cosh? k(h + 2)dz (35)
L = /_ Oh cosh k(h + z) sinh k(h + z)dz (36)
L = / oh(h + z)cosh k(h + 2) sinh k(h + z)dz (37)
L = /~ Oh(h + z)cosh? k(h + 2)dz (38)
Is = / oh(h + 2)? cosh? k(h + 2)dz (39)
I = = T 1 (40)
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