Proceedings of the Korean Nuclear Society Conference (한국원자력학회:학술대회논문집)
- 1995.10a
- /
- Pages.358-363
- /
- 1995
Conceptual Design of Passive Containment Cooling System for Concrete Containment
- Lee, Seong-Wook (Korea Advanced Institute of Science and Technology) ;
- Baek, Won-Pil (Korea Advanced Institute of Science and Technology) ;
- Chang, Soon-Heung (Korea Advanced Institute of Science and Technology)
- Published : 1995.10.01
Abstract
A study on passive cooling systems for concrete containment of advanced pressurized water reactors has been performed. The proposed passive containment cooling system (PCCS) consist of (1) condenser units located inside containment, (2) a steam condensing pool outside containment at higher elevation, and (3) downcommer/riser piping systems which provide coolant flow paths. During an accident causing high containment pressure and temperature, the steam/air mixture in containment is condensed on the outer surface of condenser tubes transferring the heat to coolant flowing inside tubes. The coolant transfers the heat to the steam condensing pool via natural circulation due to density difference. This PCCS has the following characteristic: (1) applicable to concrete containment system, (2) no limitation in plant capacity expansion, (3) efficient steam condensing mechanism (dropwise or film condensation at the surface of condenser tube), and (4) utilization of a fully passive mechanism. A preliminary conceptual design work has been done based on steady-state assumptions to determine important design parameter including the elevation of components and required heat transfer area of the condenser tube. Assuming a decay power level of 2%, the required heat transfer area for 1,000MWe plant is assessed to be about 2,000 ㎡ (equivalent to 1,600 of 10 m-long, 4-cm-OD tubes) with the relative elevation difference of 38 m between the condenser and steam condensing pool and the riser diameter of 0.62 m.
Keywords