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Abstract — A characteristic transport theory code CRX is developed and
tested for cell and assembly calculations. Since the characteristic method
treats explicitly (analytically) the streaming portion of the transport
equation, CRX treats strong absorbers well and has no practical limitations
placed on the geometry of the problem. To test the code, it was applied to
three benchmark problems which consist of complex meshes and compared
with other codes.

I. Introduction

For lattice calculations in reactor core design, the integral transport
method™® is popular due to their capability in treating complicated
geometries. But the integral transport method has several drawbacks due to
its formulation in which the transport equation is integrated for the angular
variable. First, the discretized matrices are almost full and asymmetric.
Second, in constructing the matrix elements by the ray tracing procedure,
large computing time is consumed. Third, the exact treatment of the
reflective boundary condition is very difficult and the white boundary
condition is usually used. Fourth, the treatment of the anisotropic scattering
is very difficult. On the other hand, the discrete ordinate (Sn) method uses
very simple calculation procedure, its formulation is very simple, and large
matrices are not used. But its simple formulation leads to three main
drawbacks, that is to say, the ray effect, the occurrence of the negative
flux, and the restriction in the mesh geometry it can treat.

Similarly to the streaming rays methodm, the characteristic method™
first proposed by Askew combines the desirable features of the above two
methods by solving the differential form of the transport equation with
arrays of the characteristic lines or tracks as used in the collision
probability calculations. In this method, the outgoing flux is calculated by
integrating the transport equation along the characteristic lines with the
known incoming flux and the source for each discretized direction, and thus
its solution is highly accurate in streaming dominant problems. And the
desirable features of the Sx method are retained in this method. Therefore,
this method has, in theory, no limitations in the complexity of geometry and
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the reflective condition is easily treated. In CRX, any shape of mesh which
consists of straight lines and circular arcs are easily treated and the
homogenization procedure before the assembly calculation is not required.
And the code always provides positive solution due to the characteristic
formulation, if the incoming flux and source are positive.

II. Theory and Methodology

The derivation of the characteristic method starts with the differential
form of the multigroup transport equation. The within group (g) equation for
the discretized direction (n, m) is given as follows :
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where p is the projected coordinate on x—y plane of the coordinate along
the neutron trajectory for the direction (m,n) and € is the polar angle. In
the above equation, = and # represent the azimuthal angle index and the
polar angle index, respectively. The above equation can be analytically
integrated along the characteristic line to obtain the outgoing flux. The
equation is given as follows :
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where we assumed that the material property is uniform within the integral
region and L is the track length. The equation for computational mesh
(i, with flat source approximation is simply given by the following
expression :
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where [ is the ray index and 7%, »; is given by
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The average angular flux for the direction (m,n) along the ['th ray is
obtained by integrating Eq.(1). The equation is given as follows :
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However, to perforrn the scattering source iteration, the average angular
flux over the computational mesh is required for the generation of the
source. The equation for the average flux over the computational mesh is
obtained by summing the average fluxes (Eq.(5)) over rays that pass
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through the mesh. The equation is given by the following expression :
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where A;; represents the area of the (ij) mesh and &, represents the
spacing between adjacent rays for the m'th azimuthal direction. See Fig. 1.
In CRX, the spacing for each azimuthal angle is uniform. For the finite
spacing (6,,), Eq.(6) is approximate but sufficiently accurate with a

sufficient number of rays. The accuracy of Eq.(6) is improved by the
renormalization of the track lengths using the following formula :

A;;
Li,i, m,n, Ismwm ’ M

L i,j,m,n,lzLi.i.m,n,l

m, sy cell

The complete formulations are now established for the scattering source
iteration. These equations are solved iteratively by the conventional
scattering iteration method for inner iteration and the power method for
outer iteration.

III. Applications and Results

For verification of the code, three benchmark problems are selected. The
first is the fixed source problem that was proposed by Kavenoky and
described by Sanchez® and comprises of reflected 3x3 heterogeneous pin
cells with an internal burnable absorber rod. A spatially constant and
isotropically emitting source of 1 n/cm®sec is present in the moderator. The
configuration is shown in Fig. 2. The errors in the scalar flux are compared
with the results of the CARCINOMA code™. In the CARCINOMA code, the
(E,3) approximation was used and the mesh division of the approximation
is also shown in Fig. 2. The results are summarized in Table 2. In this
calculation, the results of the two-dimensional collision probability code
CLUPTT® is used as the reference. As shown in Fig. 2, only eight meshes
are used in our code. The results show that the increase of the polar angles
mitigates the error.

The second benchmark problem consists of homogeneous 3x3 cells with
reflective boundary. The center cell is the fuel that has non-zero fission
cross section. Therefore, this. problem is an eigenvalue problem. The
configuration is given in Fig. 3(a) and the results are summarized in Table
3. In the results, it is noted that more meshes per cell are required in the
CRX code to reduce the error than in the TWODANT code. But this
requirement in CRX can be compensated by its capability of the
heterogeneous calculation. In the TWODANT code, much more meshes
would be required to describe the heterogeneities of a cell and practically
impossible to describe the heterogeneities of an assembly.
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The third is the NEACRPZ benchmark problem™ but the original
boundary condition is replaced by reflective condition. The benchmark
problem consists of a mini BWR lattice with four fuel pin cells, water gaps,
and a cruciform control rod. It is a six group problem with a severe flux
gradient across the system generated by the control rod. The configuration
is given in Fig. 3(b). The scalar flux distribution along the uppermost row
of meshes is shown in Fig. 5. The figure reveals a severe flux gradient
near the interface between water gap and cruciform control rod.

IV. Conclusions

In this paper, a characteristic transport theory code CRX is described
and tested. The code was developed to accurately analyze the heterogeneous
assembly with complicated mesh shapes. To test its accuracy and
applicability to practical problems, the code was applied to three benchmark
problems. The numerical results show that the code provides accurate
solutions in the scalar flux distribution in comparison with the collision
probability method codes with a sufficient number of angles. Therefore, it
is expected that CRX can be used for the realistic analysis of heterogeneous
cells and assemblies of complex geometry.
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Fig. 2. Configuration for the benchmark problem I

Table 1 Cross sections ( cm™!) for the benchmark problem III

problem 1 problem 2
material | moderator fuel BP material 1| material 2! material 3
o, 1.25 0.625 14.00 1.000 1.000 2.000
0, 0.008 0.270 14.00 0.200 0.500 0.000
Vo 0.000 0.000 0.000 0.450 0.250 0.000

Table 2 Results of the benchmark problem I

region liregion 2|region 3|region 4|region 5|region 6

Reference flux 03312 | 3226 | 3612 | 4.081 3832 | 4313

CRX(10,2,400) * 0452 | 2358 | 0077 | 2505 { 0634 | 2.190
relative error(%)

CRX(10,4,400)

. 0.92 .74 14 1.2 .
relative error(%) 1.690 923 | 0.744 1.146 44 | 0.892

CARCINOMA(E,3)

3. 5
relative error(%) 3.290 0.035 | 0.058 0.833 2948 2.249

*10: number of azimuthal angles per octant, 20 number of polar angles per octant,
400: number of rays for each direction
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Fig. 3. Configurations for the benchmark problem IO, III

Table 3 Relative errors(%) in the scalar flux and multiplication factor
in the benchmark problem II

region 1 region 2 region 3 ko
TWODANT(2x2) [0.20877(1.74%) | 0.59338(2.03%) | 1.05143(0.25%6) | 1.016550(0.93%)
TWODANT(3x3) *| 0.20520(ref.) 0.58152(ref.) | 1.05509(ref.) | 1.026123(ref.)
CRX(4x4) **  |0.20735(1.05%) |0.58914(1.31%6) |1.05273(0.22%6) | 1.019823(0.61%)
CRX(6x6) ** 0.20507(0.06%) [ 0.58468(0.54%) | 1.05411(0.09%) | 1.024395(0.17%)

*TWODANT( S3;,3x3 meshes/cell) solution is used as reference.

*(10,4) angles/octant are used.
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Fig. 4. Results of the benchmark problem I ( 4,,=0.816465)
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