Fuzzy Symmetic Groups

Kyu Hyuck Choi, Hee Jung Lee

Department of Mathematics Education Wonkwang University, IKSAN 570-749 Korea

Abstract:

We study fuzzy symmetric subgroups and obtain some properties of fuzzy symmetric subgroups of symmetric groups.

Keywords:

Fuzzy symmetric groups.

1. Introduction

Symmetric groups S_n are classical in some point of view ([3] is listed in References for symmetric groups S_n) and infinite symmetric groups S(X) ([4], [5]) are interesting (X denote an infinite set). After Zadeh [8, Fuzzy sets], Rosenfeld [6] initiated fuzzy groups. There are some papers (for instance, [1], [2] and [7]) on fuzzy subgroups. We define a fuzzy symmetric subgroup of symmetric group S_n and study fuzzy symmetric subgroups of symmetric groups S_n .

2. Definitions

For the sake of convenience, we recall some definitions and elementary results. G denotes a group with e as the identity element.

Definition 1. (i)[8]. A fussy subset of a set A is a function $f: A \to [0,1]$. (ii)[6]. Let G be a group. A fuzzy subset f of G is said to be a fuzzy subgroup of G if for every $x,y \in G$, (1) $\min\{f(x),f(y)\} \leq f(xy)$ and (2) $f(x^{-1}) = f(x)$.

- Theorem 1. [6]. If f is a fuzzy subgroup of G, then $f(x) \le f(e)$ for every $x \in G$, where e denotes the identity of the group G.
- **Theorem 2.** [6]. A fuzzy subset f of G is a fuzzy subgroup of G if and only if $min(f(x), f(y)) \le f(xy^{-1})$, for every $x, y \in G$.
- **Notation 1.** [2] Let G be a group. Let f be a fuzzy subset of G. We introduce a notation $f_t: f_t=(x \in G: f(x) \ge t)$, where $t \in [0,1]$.
- **Theorem 3.** [2]. Let f be a fuzzy subset of G. f is a fuzzy subgroup of G if and only if f is a subgroup of G, for every f with $0 \le f \le f(e)$.
- **Definition 2.** S_n denotes the symmetric group on $\{1,2,\ldots,n\}$. e denotes the identity of S_n
- (i) Let $\pi \in S_n$. $C(\pi)$ denotes the set of all λ in S_n such that $\lambda = x(\pi)x^{-1}$, $x \in S_n$. $C(\pi)$ is called the conjugacy class of S_n containing π . (See [3, page 10] for the definition of a conjugacy class.)
 - (ii) F(G) denotes the set of all fuzzy subgroups of G.
 - (iii) |A| denotes the cardinality of a set A.
 - (iv) Let $f \in F(S_n)$. We define $f(C(\pi)) = \{f(x) : x \in C(\pi)\}$.
- (v) $A = \{f(x_1), f(x_2), \dots, f(y_k)\} = B$ means that $f(x) \le f(y)$, for $f(x) \in A$, $f(y) \in B$ (Similarly, we define $A \le B$ to mean that $f(x) \le f(y)$.)
- (vi) Let $t \in [0,1]$. If $C(\pi) = t$ mean that f(x) = t for all $x \in C(\pi)$. This is the case, we say that $f(C(\pi))$ is constant.
 - (vii) Let $f \in F(G)$. Im $(f) = \{f(x) : x \in G\}$ denotes the image set of f
- (viii) Let $f,g \in F(S_n)$. If $|\operatorname{Im}(f)| < |\operatorname{Im}(g)|$, then we write $f \leqslant g$. Following this rule, we define $\max F(S_n)$.
- (ix) Let $f=\max F(S_n)$. Then we say that f is a fuzzy symmetric subgroup (or group) of S_n .