A Note on g-Closed Fuzzy Sets and g-Fuzzy Continuities

Young-Sin Ahn* and Kul Hur**

0.Introduction.

We introduce the concepts of generalized closed fuzzy set(breifly g-closed fuzzy set) and generalized fuzzy continuity(briefly g-fuzzy continuity), and investigate their some properties. When A is a fuzzy set in a fuzzy topological space, we denote the closure of A, the interior of A and the complement of A as cl(A), Int(A) and CA, respectively.

1. Preliminiaries.

Let X be a set and let I = [0, 1]. Then a mapping $A : X \to I$ is called a fuzzy set in X [5]. We denote the family of all the fuzzy sets in X as I^X . In particular, we will denote the empty fuzzy set and the whole fuzzy set in X as 0 and 1, respectively, where 0 and 1 denotes the constant mapping from X into I with the values 1 and 1, respectively.

We begin with some preliminary definitions and results.

Definition 1.1 [1]. A fuzzy topology on a set X is a family τ of fuzzy sets in X which satisfies the following conditions:

- (a) $0, 1 \in \tau$,
- (b) If $A, B \in \tau$, then $A \cap B \in \tau$,
- (c) If $A_{\alpha} \in \tau$ for each $\alpha \in J$, then $\bigcup_{\alpha \in J} A_{\alpha} \in \tau$.

The pair (X, τ) is called a fuzzy topological space (or simply fts.) Each member of τ is called a τ -open fuzzy set(or simply open fuzzy set) in X. A fuzzy set is τ -closed if and only if its complement is τ -open.

Definition 1.2[1]. Let X and Y be sets, let $f: X \to Y$ be a mapping, and let $A \in I^X$ and $B \in I^Y$. Then:

(1) The inverse image of B, written as $f^{-1}(B)$, is a fuzzy set in X defined by

$$[f^{-1}(B)](x) = B(f(x)) = (B \circ f)(x)$$
 for each $x \in X$

(2) The image of A, written as f(A), is a fuzzy set in Y defined by

$$[f(A)](y) = \begin{cases} \sup_{\mathbf{x} \in f^{-1}(y)} A(x), & \text{if } f^{-1}(y) \neq \emptyset \\ 0, & \text{otherwise.} \end{cases}$$

^{*} Dong Shin Junior College

^{**} Dept. of Mathematics, Wonkwang University.

for each $y \in Y$, where $f^{-1}(y) = \{x \in X | f(x) = y\}$.

Theorem A[1]. Let f be a mapping from a set X to a set Y, Then:

- (a) If $B_1 \subset B_2$, then $f^{-1}(B_1) \subset f^{-1}(B_2)$, where $B_1, B_2 \in I^Y$.
- (b) If $A_1 \subset A_2$, then $f(A_1) \subset f(A_2)$, where $A_1, A_2 \in I^X$.
- (c) $f(f^{-1}(B)) \subset B$ for each $B \in I^Y$.
- (d) $A \subset f^{-1}(f(A))$ for each $A \in I^X$.
- (e) Let g be a mapping from a set Y to a set Z. Then $(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C))$ for each $C \in I^Z$, where $g \circ f$ is the composition of f and g.

Definition 1.3 [4]. Let (X, τ) and (Y, u) be fuzzy topological spaces. Then a mapping $f: X \to Y$ is said to be fuzzy continuous (or simply F-continuous) if the inverse image of each u-open fuzzy set is τ -open.

Theorem B[4]. Let(X, τ) be the product fuzzy topological space of the family $\{(X_{\alpha}, \tau_{\alpha})\}_{\alpha \in J}$ of fuzzy topological spaces. Then:

- (a) For each $\alpha \in J$, π_{α} is fuzzy continuous.
- (b) τ is the smallest fuzzy topology on X such that (a) is true.
- (c) Let (Y,u) be a fuzzy topological space and let $f:Y\to X$ Then f is fuzzy continuous if and only if $\pi_\alpha\circ f$ is fuzzy continuous for each $\alpha\in J$, where π_α is the projection of X onto X_α .

Definition 1.4 [3]. A fuzzy set A in a set X is called a fuzzy point of X with the value $\lambda(0 < \lambda \le 1)$ and the support $x \in X$ if for each $y \in X$,

$$A(y) = \begin{cases} \lambda, & if \quad y = x \\ 0, & otherwise. \end{cases}$$

We denote this fuzzy point A by x_{λ} .

Definition 1.5 [3]. A fuzzy point x_{λ} is said to be contained in a fuzzy set A or to belong to A, denoted by $x_{\lambda} \in A$, if $\lambda \leq A(x)$.

Definition 1.6[3]. Let A and B be fuzzy sets in a set X. Then A is said to be quasi-coincident with B, denoted by AqB, if there exists $x \in X$ such that A(x) > (CB)(x) or A(x) + B(x) > 1. If this is true, we also say that A and B are quasi-coincident(with each other) at x.

Definition 1.7[3]. A fuzzy point x_{λ} is said to be quasi-coincident with A, denoted by $x_{\lambda}qA$, if $\lambda > (CA)(x)$ or $\lambda + A(x) > 1$.

Definition 1.8 [3]. A fuzzy set A in a fuzzy topological space (X, τ) is called a **Q-neighborhood** of x_{λ} , if there exists a $B \in \tau$ such that $x_{\lambda}qB \subset A$.

Theorem C[3]. $A \subset B$ if and only if A and CB are not quasi-coincident. In particular, $x_{\lambda} \in A$ if and only if x_{λ} is not quasi-coincident with CA.

Theorem D[3]. A fuzzy point $x_{\lambda} \in Cl(A)$ if and only if each Q-neighborhood of x_{λ} is quasi-coincident with A.

2. g-Closed Fuzzy Sets.

In this section we will introduce the concepts of g-closed fuzzy set and the g-closure, and obtain two results.

Definition 2.1. Let X be a fuzzy topological space and let $A \in I^X$. Then:

- (1) A is said to be g-fuzzy closed in X if $cl(A) \subset G$ whenever $A \subset G$ and G is fuzzy open in X.
 - (2) A is said to be g-fuzzy open in X if CA is g-fuzzy closed in X.

Example 2.2. Let $X = \{a, b, c\}$ and let $\tau = \{\underline{0}, O_1, O_2, O_3, O_4, 1\}$, where

$$O_1 = \{(a, 0.5), (b, 0.6), (c, 0.8)\}, \quad O_2 = \{(a, 0.4), (b, 0.7), (c, 0.2)\}$$

$$O_3 = \{(a, 0.4), (b, 0.6), (c, 0.2)\}, \quad O_4 = \{(a, 0.5), (b, 0.7), (c, 0.8)\}$$

Let $A = \{(a, 0.5), (b, 0.2), (c, 0.1)\}$. Then (X, τ) is a fuzzy topological space and A is a g-fuzzy closed in X.

The following result gives a useful characterization of g-fuzzy openness:

Theorem 2.3. Let A be a fuzzy set in a fuzzy topological space X. Then A is g-fuzzy open in X if and only if $F \subset Int(A)$ whenever F is fuzzy closed in X and $F \subset A$.

Proof. (\Rightarrow): Suppose A is g-fuzzy open in X. Let F be any closed fuzzy set in X such that $F \subset A$. Then CF is Fuzzy open in X such that $CA \subset CF$. By hypothesis, since CA is g-fuzzy closed in X, $cl(CA) \subset CF$. Let $\mathcal{F} = \{G \in I^X | G \text{ is closed in } X \text{ and } CA \subset G\}$ and let $x \in X$. Then there is a $G \in \mathcal{F}$ such that $G(x) \leq (CF)(x) = 1 - F(x)$. Since $G \in \mathcal{F}$, $CA \subset G$. Thus $1 - A(x) + (CA)(x) \leq G(x)$. So $F(x) \leq (CG)(x) \leq A(x)$ and CG is fuzzy open in X. Hence $F(x) \leq (\bigcup_{G \in \mathcal{F}} CG)(x) = [Int(A)](x)$. Therefore $F \subset Int(A)$.

(\Leftarrow): Suppose the necessary condition holds. Let U be any open fuzzy set in X such that $CA \subset U$. Then CU is fuzzy closed in X and $CU \subset A$. By hypothesis, $CU \subset Int(A)$. Let $\mathcal{O} = \{O \in I^X | O \text{ is open in } X \text{ and } O \subset A\}$ and let $x \in X$. Then there is an $O \in \mathcal{O}$ such that $1-U(x)=(CU)(x) \leq O(x)$. Since $O \in \mathcal{O}$, $A \subset O$. Thus $O(x) \leq A(x)$. So $1-A(x) \leq 1-O(x) \leq U(x)$ and hence $(CA)(x) \leq (CO)(x) \leq U(x)$. Since CO is fuzzy closed in X, $(\cap_{O \in \mathcal{O}}CO)(x) \leq U(x)$, that is, $[cl(CA)](x) \leq U(x)$. Thus $cl(CA) \subset U$ and hence CA is g-fuzzy closed in X. Therefore A is g-fuzzy open in X.

4

Definition 2.4. Let A be a fuzzy set in a fuzzy topological space X. Then the intersection of all g-closed fuzzy sets containing A is called the g-closure of A and is denoted by $cl^*(A)$. Hence

$$cl^*(A) = \cap \{F \in I^X | F \text{ is g-fuzzy closed in } X \text{ and } A \subset F\}$$
 for each $A \in I^X$.

It is clear that $A \subset cl^*(A) \subset cl(A)$. We shall assume that $cl^*(A)$ is g-fuzzy closed in X. It is easily proved that A is g-fuzzy closed in X if and only if $cl^*(A)$ is g-fuzzy closed in X.

Definition 2.5. Let x_{λ} be a fuzzy point of X and let $N \in I^{X}$. Then N is a called **g-Q-neighborhood** of x_{λ} in X if there is a g-open fuzzy set O in X such that $x_{\lambda}qO \subset N$.

Theorem 2.6. Let $A \in I^X$. Then $x_{\lambda} \in cl^*(A)$ if and only if for each g-Q-neighborhood $N_{x_{\lambda}}$ of x_{λ} in X, $N_{x_{\lambda}}qA$.

Proof. (\Rightarrow): Suppose $x_{\lambda} \in cl^*(A)$. Assume that necessary condition does not hold. Then there is a g-Q-neighborhood N of x_{λ} in X such that NqA. Since N is a g-Q-neighborhood of x_{λ} , by Definition 2.5, there is a g-open fuzzy set O in X such that $x_{\lambda}qO \subset N$. Thus $\lambda + O(x) > 1$ and $O(x) \leq N(x)$. Since NqA, $N(x) + A(x) \leq 1$. Thus $O(x) + A(x) \leq N(x) + A(x)$. So $O(x) + A(x) \leq 1$ and hence OqA. Therefore $A \subset CO$. By Definition 2.1, CO is g-closed in X. Thus $cl^*(A) \subset CO$. Since $\lambda + O(x) > 1$, $x_{\lambda} \notin CO$. So $x_{\lambda} \notin cl^*(A)$. This is contrary to the hypothesis.

 (\Leftarrow) : Suppose the necessary condition holds. Assume that $x_{\lambda} \notin cl^*(A)$. By Definition 2.4, there exists a g-closed set F of X such that $A \subset F$ and $x_{\lambda} \notin F$. Thus $x_{\lambda}qCF$ and CF is g-open fuzzy set in X. Thus CF is a g-Q-neighborhood of x_{λ} in X. But CFqA. This contrary to the hypothesis.

3. g-Fuzzy Continuities.

In this section we will introduce the concept of g-fuzzy continuity and obtain some properties of g-fuzzy continuities.

Definition 3.1. Let X and Y be fuzzy topological spaces. Then a mapping $f: X \to Y$ is said to be g-fuzzy continuous if the inverse image of every closed fuzzy set in Y is g-fuzzy closed in X.

It is clear that a mapping $f: X \to Y$ is g-fuzzy continuous if and only if the inverse image of every open fuzzy set in Y is g-fuzzy open in X.

Example 3.2. Let (X,τ) be the fuzzy topological space in Example 2.2. Let $Y = \{x,y,z,w\}$ and let $u = \{\underline{0},O,\underline{1}\}$, where $O = \{(x,0.7),(y,0.5),(z,0.8),(w,0.2)\}$. We define a mapping $f:X\to Y$ by f(a)=f(b)=x, f(c)=w. Then $f:(X,\tau)\to (Y,u)$ is g-fuzzy continuous.

Theorem 3.3. Let $\{X_{\alpha}|\alpha\in J\}$ be a family of fuzzy topological spaces and let X be a fuzzy topological space. If $f:X\to\Pi_{\alpha\in J}X_{\alpha}$ is a g-fuzzy continuous mapping, then $\Pi_{\alpha}\circ f:X\to X_{\alpha}$ is a g-fuzzy continuous for each $\alpha\in J$, where π_{α} is the projection of $\Pi_{\alpha\in J}X_{\alpha}$ onto X_{α} .

Proof. For each $\alpha \in J$, let U_{α} be an arbitrary open fuzzy set in X_{α} . By Theorem B (a), since π_{α} is fuzzy continuous, $\pi_{\alpha}^{-1}(U_{\alpha})$ is fuzzy open in $\Pi_{\alpha \in J}X_{\alpha}$. By hypothesis, and Definition 3.1, $f^{-1}(\pi_{\alpha}^{-1}(U_{\alpha})) = (\pi_{\alpha} \circ f)^{-1}(U_{\alpha})$ is g-fuzzy open in X. Therefore $\pi_{\alpha} \circ f$ is g-fuzzy continuous.

Theorem 3.4. Let X and Y be fuzzy topological spaces, and let $f: X \to Y$ be g-fuzzy continuous and fuzzy closed. If G is g-fuzzy open(resp. g-fuzzy closed) in Y, then $f^{-1}(G)$ is g-fuzzy open(resp. g-fuzzy closed) in X.

Proof. Let G be a g-open fuzzy set in Y. Let $F \subset f^{-1}(G)$, where F is fuzzy closed in X. Then $f(F) \subset G$ and f(F) is fuzzy closed in Y because f is a fuzzy closed mapping. Since G is g-fuzzy open in Y, by Theorem 2.3, $f(F) \subset Int(G)$. Thus $F \subset f^{-1}(Int(G))$. Since f is g-fuzzy continuous and Int(G) is fuzzy open in Y, by Theorem 2.3, $F \subset Int[f^{-1}(Int(G))] \subset Int(f^{-1}(G))$. Hence $f^{-1}(G)$ is g-fuzzy open in X. By taking complements, we can show that if G is g-fuzzy closed in Y, then $f^{-1}(G)$ is g-fuzzy closed in X.

We obtain the following result immediately from Theorem 3.4.

Corollary 3.5. Let X, Y and Z be fuzzy topological spaces. If $f: X \to Y$ is a fuzzy closed and g-fuzzy continuous mapping, and $g: Y \to Z$ is a g-fuzzy continuous mapping, then $g \circ f: X \to Z$ is g-fuzzy continuous.

References.

- [1] C.L.Chang, Fuzzy topological spaces, J.Math.Anal.Appl. 24 (1968), 182-189.
- [2] R.Lowen, Fuzzy topological spaces and fuzzy compactness, J.Math.Anal.Appl.56 (1976), 621-633.
- [3] Pu Pao-Ming and Liu Ying-ming, Fuzzy topology(I), J.Math. Anal.Appl. 76(1980), 571-599.
- [4] C.K.Wong, Fuzzy points and local properties of fuzzy topology, J. Math.Anal.Appl. 46(1974), 316-328.
- [5] L.A.Zadeh, Fuzzy sets, Inform and Control 8(1965), 338-353.