Φ-유계 분산의 비단조 퍼지 측도에 관한 연구

On non-monotonic fuzzy measures of Φ -bounded variation

Lee-Chae Jang

Department of Applied Mathematics, Kon-Kuk University 322 Danwoldong Choongjusi, 380-701, Korea

Joong-Sung Kwon

Department of Mathematics, Sun-Moon University San 9 Tangjeongmyeon Ansankun, 337-840, Korea

Abstract

This paper discuss some properties of non-monotonic fuzzy measures of Φ -bounded variation. We show that there is an example of Φ such that $\mathcal{B}V(X,\mathcal{F})$ is a proper subspace of $\Phi\mathcal{B}V(X,\mathcal{F})$. And also, we prove that $\Phi\mathcal{B}V(X,\mathcal{F})$ is a real Banach space. Furthermore, we investigate some properties of non-monotonic fuzzy Φ -measures.

1. Introduction.

In T. Murofushi, M. Sugeno and M. Machida[1], they discussed non-monotonic fuzzy measures, which are set functions without monotonicity. And also they studied the space of non-monotonic fuzzy measures of bounded variation and investigate some properties of a non-monotonic fuzzy measure of bounded variation. But the fuzzy measure in the sense of Sugeno[3], Q. Z. Wang[4], and Zhong[5] is a monotonic set function. In this paper, we introduce the concept of non-monotonic fuzzy measures of Φ -bounded variation, where $\Phi = \{\phi_n\}$ is a sequence of increasing convex functions, defined on the nonnegative real numbers, such that $\phi_n(0) = 0$ and $\phi_n(x) > 0$ for x > 0 and $n = 1, 2, \cdots$.

We say that Φ is a Φ^* -sequence if and only if $\phi_{n+1}(x) \leq \phi_n(x)$ for all n and x, and a Φ -sequence if in addition $\sum_n \phi_n(x)$ diverges for x > 0. These definitions were introduced in M. Schramn[2]. In section 2, we introduce non-monotonic fuzzy measures of Φ -bounded variation and discuss some properties of

these fuzzy measures. And also, we prove that $\Phi BV(X,\mathcal{F})$, $\Phi BV_0(X,\mathcal{F})$ are real Banach spaces and that $\Phi BV(X,\mathcal{F})$ is isometrically isomorphic to $\Phi BV_0(X,\mathcal{F})$. Furthermore, we will define non-monotonic fuzzy Φ -measures and discuss some properties of non-monotonic fuzzy Φ -measures.

2. Non-monotonic fuzzy measures of Φ-bounded variation.

Throughout the paper we assume that (X, \mathcal{F}) is a measurable space.

Definition 2.1. A fuzzy measure on (X, \mathcal{F}) is a real-valued set function $\lambda : \mathcal{F} \to \mathbb{R}^+$ satisfying

- (i) $\lambda(\emptyset) = 0$
- (ii) $\lambda(A) \leq \lambda(B)$ whenever $A \subset B$ and $A, B \in \mathcal{F}$ where $R^+ = [0, \infty)$, the set of nonnegative real numbers.

Definition 2.2. A non-monotonic fuzzy measure on (X, \mathcal{F}) is a real-valued set function $\mu : \mathcal{F} \to \mathbb{R}^+$ satisfying $\mu(\emptyset) = 0$.

In [2], the total variation $V(\mu)$ of μ on X is defined by

$$V(\mu) = \sup \left\{ \sum_{i=1}^{n} |\mu(A_i) - \mu(A_{i-1})| \middle| \emptyset = A_0 \subset A_1 \subset \cdots \subset A_n = X, \quad \{A_i\}_{i=0}^n \subset \mathcal{F} \right\}.$$

A real-valued set function μ is said to be of bounded variation if and only if $V(\mu) < \infty$. And also, we introduce the following definitions of non-monotonic fuzzy measures of Φ -bounded variation and total Φ -variation.

Definition 2.3. Let $\Phi = \{\phi_n\}$ be either a Φ^* -sequence or a Φ -sequence. For a given real-valued set function $\mu : \mathcal{F} \to R$, the total Φ -variation $\Phi V(\mu)$ of μ on X is defined by

$$\Phi V(\mu) = \sup \left\{ \sum_{i=1}^n \phi_i(|\mu(A_i) - \mu(A_{i-1})|) \middle| \emptyset = A_0 \subset A_1 \subset \cdots \subset A_n = X, \{A_i\}_{i=0}^n \subset \mathcal{F} \right\}$$

A real-valued set function μ is said to be of Φ -bounded variation if and only if $\Phi V(\mu) < \infty$.

Then it is easy to show that if $\Phi = \{\phi_n\}$ and $\phi_n(x) = x$ for each n, then μ is of Φ -bounded variation if and only if μ is of bounded variation.

Definition 2.4. The family $\{\phi_n\}$ is called the uniformly equicontinuous on R if there is a positive constant M, independent of $n \in N$ and $x, y \in R$, such that

$$|\phi_n(x) - \phi_n(y)| \le M|x - y| \tag{2-1}$$

We note that if Φ is equicontinuous on R and if $x = |\mu(A_i) - \mu(A_{i-1})|$ and y = 0, then $\phi_n(|\mu(A_i) - \mu(A_{i-1})|) \le M|\mu(A_i) - \mu(A_{i-1})|$ for $n = 1, 2, 3, \cdots$. Hence, we note that this definition of Φ -bounded variation is a notion of generalized of bounded variation.

Proposition 2.5. Let $\Phi = \{\phi_n\}$ be as in the Definition 2.3. If in addition, $\Phi = \{\phi_n\}$ is uniformly equicontinuous, then a monotonic fuzzy measure λ is of Φ -bounded variation.

Proof: Since $\{\phi_n\}$ is uniformly equicontinuous, there exist a positive constant M such that $\{\phi_n\}$ satisfies (2-1). Hence

$$\Phi V(\lambda) = \sup \left\{ \sum_{i=1}^{n} \phi_i \left(|\lambda(A_i) - \lambda(A_{i-1})| \right) \middle| \emptyset = A_0 \subset A_1 \subset \cdots \subset A_n = X, \{A_i\}_{i=0}^n \subset \mathcal{F} \right\} \\
\leq \sup \left\{ \sum_{i=1}^{n} M |\lambda(A_i) - \lambda(A_{i-1})| \middle| \emptyset = A_0 \subset A_1 \subset \cdots \subset A_n = X, \{A_i\}_{i=0}^n \subset \mathcal{F} \right\} \\
= MV(\lambda) = M\lambda(X) < \infty$$

Therefore λ is of Φ -bounded variation.

We denote the set of monotonic fuzzy measures on (X,\mathcal{F}) by $FM(X,\mathcal{F})$ and the set of non-monotonic fuzzy measures of Φ -bounded variation on (X,\mathcal{F}) by $\Phi BV(X,\mathcal{F})$. Let Φ be as in the definition 2.3 and μ a non-monotonic fuzzy measure on (X,\mathcal{F}) . Then, definition 2.3 implies that μ is of Φ -bounded variation if and only if there is an $M < \infty$ such that for every finite collection $\{A_i\}_{i=0}^n \subset \mathcal{F}$ with $\emptyset = A_0 \subset A_1 \subset \cdots \subset A_n = X$,

$$\sum_{i=1}^{n} \phi_{i} (|\mu(A_{i}) - \mu(A_{i-1})|) < M$$

Let $\phi_n(x) = \frac{x}{n^2}$ for $n = 1, 2, \cdots$. Then, it is clearly to show that $\mathcal{B}V(X, \mathcal{F}) \subset \Phi \mathcal{B}V(X, \mathcal{F})$ and that the converse of implication is not true, that is, the following example 2.6 implies that Φ -bounded variation is some generalization of bounded variation.

Example 2.6. Let λ be the Lebesque measure on $([0,1], \mathcal{B})$, where \mathcal{B} is the class of all Borel subsets of the unit interval [0,1], and let $h(x) = x \sin\left(\frac{1}{x}\right)$, for all $x \in (0,1]$, h(0) = 0, and $\mu = h \cdot \lambda$. Since ϕ is not of bounded variation, it is easy to see that the set function μ is a non-monotonic fuzzy measure that is not of bounded variation. Since $\phi_n(x) = \frac{x}{n^2}$, $\Phi = \{\phi_n\}$ is a Φ^* -sequence and hence, μ is of Φ -bounded variation.

We recall that if ϕ is an increasing convex function, $\phi(0) = 0$, $x \ge 0$ and $0 \le \alpha \le 1$, we have

$$\phi(\alpha x) \leq \alpha \phi(x)$$

We define a norm as follows: for every $\mu \in \Phi BV(X, \mathcal{F})$,

$$\|\mu\|_{\Phi} = \inf\left\{k > 0 : \Phi V\left(\frac{\mu}{k}\right) \le 1\right\}.$$

Proposition 2.7. Let μ be a non-monotonic fuzzy measure in $\Phi BV(X, \mathcal{F})$. Then, we have that

- (i) $\Phi V\left(\frac{\mu}{\|\mu\|\Phi}\right) \leq 1$
- (ii) if $||\mu||_{\Phi} \leq 1$, then $\Phi V(\mu) \leq ||\mu||_{\Phi}$

Proof: (i) Take $k > ||\mu||_{\Phi}$; then, the definition of $||\mu||_{\Phi}$ implies that for any finite collection

$$\{A_i\}_{i=0}^n \subset \mathcal{F} \quad \text{with} \quad \emptyset = A_0 \subset A_1 \subset \cdots \subset A_n = X,$$

we have

$$\sum_{i=1}^{n} \phi_{i} \left(\left| \frac{\mu}{k} (A_{i}) - \frac{\mu}{k} (A_{i-1}) \right| \right) \leq \Phi V \left(\frac{\mu}{k} \right) \leq 1.$$

Thus

$$\sum_{i=1}^{n} \phi_i \left(\left| \frac{\mu}{\|\mu\|_{\Phi}} (A_i) - \frac{\mu}{\|\mu\|_{\Phi}} (A_{i-1}) \right| \right) = \lim_{k \to \|\mu\|_{\Phi}^+} \sum_{i=1}^{n} \phi_i \left(\left| \frac{\mu}{k} (A_i) - \frac{\mu}{k} (A_{i-1}) \right| \right) \le 1,$$

which implies (i).

(ii) Since $||\mu||_{\Phi} \leq 1$,

$$\sum_{i=1}^{n} \phi_{i}(|\mu(A_{i}) - \mu(A_{i-1})|) \leq ||\mu||_{\Phi} \sum_{i=1}^{n} \phi_{i}(|\frac{\mu}{||\mu||_{\Phi}}(A_{i}) - \frac{\mu}{||\mu||_{\Phi}}(A_{i-1})|)$$

$$\leq ||\mu||_{\Phi}$$

Theorem 2.8. $\Phi BV(X,\mathcal{F})$ is a normed vector space with a norm $\|\cdot\|_{\Phi}$

Proof: Let $\mu, \nu \in \Phi BV(X, \mathcal{F})$ and $c \in R$.

(i) Since ϕ_n is increasing convex for each n, for each $k_1>k>0$

$$\begin{split} \Phi V \left(\frac{\mu}{k_1}\right) &= \sup \sum_{i=1}^n \phi_i \left(\left| \frac{\mu}{k_1}(A_i) - \frac{\mu}{k_1}(A_{i-1}) \right| \right) \\ &= \sup \sum_{i=1}^n \phi_i \left(\frac{k}{k_1} \left| \frac{\mu}{k}(A_i) - \frac{\mu}{k}(A_{i-1}) \right| \right) \\ &\leq \sup \sum_{i=1}^n \frac{k}{k_1} \phi_i \left(\left| \frac{\mu}{k}(A_i) - \frac{\mu}{k}(A_{i-1}) \right| \right) \\ &\leq \sup \sum_{i=1}^n \phi_i \left(\left| \frac{\mu}{k}(A_i) - \frac{\mu}{k}(A_{i-1}) \right| \right) \\ &= \Phi V \left(\frac{\mu}{k} \right) \end{split}$$

Thus, by part (i) of the proposition 2.7, $\{k > 0 : \Phi V(\frac{\mu}{k}) \le 1\} = [\|\mu\|_{\Phi}, \infty)$.

Clearly $\|\mu\|_{\Phi} = 0$ if $\mu = 0$. Conversely if $\mu \neq 0$, let $A \in \mathcal{F}$ be such that $\mu(A) \neq 0$, then

$$\Phi V\left(\frac{\mu}{k}\right) \ge \phi_1\left(\frac{|\mu(A)|}{k}\right) \\
\ge \frac{k_1}{k}\phi_1\left(\frac{|\mu(A)|}{k_1}\right) \quad \text{for } k_1 \le k.$$

As $k \to 0$, $\frac{k_1}{k}\phi_1\left(\frac{|\mu(A)|}{k_1}\right) \to \infty$, and hence $\Phi V(\frac{\mu}{k}) \to \infty$. Thus there is a k > 0 so that $\Phi V(\frac{\mu}{k}) > 1$, and so $\|\mu\|_{\Phi} \neq 0$;

(ii)

$$\begin{aligned} ||c\mu||_{\Phi} &= \inf \left\{ k > 0 \middle| \Phi V \left(\frac{c\mu}{k} \right) \le 1 \right\} \\ &= \inf \left\{ k > 0 \middle| \Phi V \left(\frac{|c|\mu}{k} \right) \le 1 \right\} \\ &= |c|||\mu||_{\Phi} \end{aligned}$$

(iii) Since each ϕ_i is increasing convex for each $i = 1, 2, 3, \cdots$

$$\begin{split} &\sum_{i=1}^{n} \phi_{i} \left(\frac{|(\mu + v)(A_{i}) - (\mu + v)(A_{i-1})|}{\|\mu\|_{\Phi} + \|\nu\|_{\Phi}} \right) \\ &\leq \sum_{i=1}^{n} \phi_{i} \left(\frac{|\mu(A_{i-1}) - \mu(A_{i})| + |v(A_{i}) - \nu(A_{i-1})|}{\|\mu\|_{\Phi} + \|\nu\|_{\Phi}} \right) \\ &= \sum_{i=1}^{n} \phi_{i} \left(\left[\frac{\|\mu\|_{\Phi}}{\|\mu\|_{\Phi} + \|\nu\|_{\Phi}} + \frac{\|\nu\|_{\Phi}}{\|\mu\|_{\Phi} + \|\nu\|_{\Phi}} \right] \frac{|\mu(A_{i-1}) - \mu(A_{i})| + |v(A_{i}) - \nu(A_{i-1})|}{\|\mu\|_{\Phi} + \|\nu\|_{\Phi}} \right) \\ &\leq \sum_{i=1}^{n} \phi_{i} \left(\frac{\|\mu\|_{\Phi}}{\|\mu\|_{\Phi} + \|\nu\|_{\Phi}} \frac{|\mu(A_{i-1}) - \mu(A_{i})|}{\|\mu\|_{\Phi} + \|\nu\|_{\Phi}} + \frac{\|\nu\|_{\Phi}}{\|\mu\|_{\Phi} + \|\nu\|_{\Phi}} \frac{|v(A_{i-1}) - \nu(A_{i})|}{\|\mu\|_{\Phi} + \|\nu\|_{\Phi}} \right) \\ &\leq \sum_{i=1}^{n} \left\{ \frac{\|\mu\|_{\Phi}}{\|\mu\|_{\Phi} + \|\nu\|_{\Phi}} \phi_{i} \left(\frac{|\mu(A_{i-1}) - \mu(A_{i})|}{\|\mu\|_{\Phi}} \right) + \frac{\|\nu\|_{\Phi}}{\|\mu\|_{\Phi} + \|\nu\|_{\Phi}} \phi_{i} \left(\frac{|v(A_{i-1}) - \nu(A_{i})|}{\|\nu\|_{\Phi}} \right) \right\} \\ &= \frac{\|\mu\|_{\Phi}}{\|\mu\|_{\Phi} + \|\nu\|_{\Phi}} \sum_{i=1}^{n} \phi_{i} \left(\frac{|\mu(A_{i-1}) - \mu(A_{i})|}{\|\mu\|_{\Phi}} \right) + \frac{\|\nu\|_{\Phi}}{\|\mu\|_{\Phi} + \|\nu\|_{\Phi}} \sum_{i=1}^{n} \phi_{i} \left(\frac{|v(A_{i-1}) - \nu(A_{i})|}{\|\nu\|_{\Phi}} \right) \\ &\leq 1 \end{split}$$

Hence, $\Phi V\left(\frac{\mu+\nu}{\|\mu\|_{\Phi}+\|\nu\|_{\Phi}}\right) \leq 1$. By the Definition of $\|\cdot\|_{\Phi}$, we have

$$\|\mu + v\|_{\Phi} \le \|\mu\|_{\Phi} + \|\nu\|_{\Phi}.$$

Therefore, $\|\cdot\|_{\Phi}$ is a norm on $\Phi BV(X, \mathcal{F})$. And also, (i) and (ii) implies that $\Phi BV(X, \mathcal{F})$ is a vector space.

Theorem 2.9. $\Phi BV(X,\mathcal{F})$ is a real Banach space with the norm $\|\cdot\|_{\Phi}$.

Proof: Let μ and v be fuzzy measure in $\Phi BV(X, \mathcal{F})$ such that $||\mu - \nu||_{\Phi} < \varepsilon < 1$. Since $\frac{||(\mu - \nu)||_{\Phi}}{\varepsilon} < 1$, so, by proposition 2.7,

$$\Phi V\left(\frac{\mu - \nu}{\varepsilon}\right) \le 1$$

Now for each $A \in \mathcal{F}$,

$$\phi_1\left(\frac{|\mu(A)-\nu(A))|}{\varepsilon}\right) \leq \Phi V\left(\frac{\mu-\nu}{\varepsilon}\right) \leq 1.$$

This implies that if $\{\mu_n\}$ is a Cauchy sequence in this norm $\|\cdot\|_{\Phi}$, $\{\mu_n(A)\}$ is a Cauchy sequence in R for each $A \in \mathcal{F}$. Thus, there is a real-valued set function μ such that $\mu_m(A) \to \mu(A)$ in R for each $A \in \mathcal{F}$. We note that $\mu_m(\emptyset) = 0$ for all $n = 1, 2, \cdots$. Since $\mu_m(\emptyset) \to \mu(\emptyset)$, $\mu(\emptyset) = 0$. Hence μ is a non-monotonic fuzzy measure on (X, \mathcal{F}) . Let $\varepsilon > 0$ be given, $\{A_i\}_{i=0}^n$ a finite collection, and suppose that there is some positive integer N_0 such that for any $m, l \geq N_0$, $\|\mu_m - \mu_l\|_{\Phi} < \varepsilon$, then

$$\begin{split} &\sum_{i=1}^{n} \phi_{i} \left(\left| \frac{(\mu_{m} - \mu)(A_{i}) - (\mu_{m} - \mu)(A_{i-1})}{\varepsilon} \right| \right) \\ &= \lim_{l \to \infty} \sum_{i=1}^{n} \phi_{i} \left(\left| \frac{(\mu_{m} - \mu_{l})(A_{i}) - (\mu_{m} - \mu_{l})(A_{i-1})}{\varepsilon} \right| \right) \\ &\leq \lim_{l \to \infty} \Phi V \left(\frac{\mu_{m} - \mu_{l}}{\varepsilon} \right) \leq 1 \end{split}$$

Thus $\Phi V(\frac{\mu_m-\mu}{\epsilon}) \leq 1$, and so $\Phi V(\mu_m-\mu) \leq \epsilon$. Hence, $\mu_m \to \mu$ in this norm $\|\cdot\|_{\Phi}$. And also, we have

$$\Phi V(\mu) = \Phi V(\mu - \mu_m + \mu_m) \le \Phi V(\mu - \mu_m) + \Phi V(\mu_m)$$

$$< \varepsilon + \Phi V(\mu_m) < \infty.$$

Thus $\mu \in \Phi \mathcal{B}V(X, \mathcal{F})$.

Definition 2.10. For every $\mu \in \Phi BV(X, \mathcal{F})$, we define

$$|\mu|_{\Phi}(A) = \sup \left\{ \sum_{i=1}^{n} \phi_{i} \left(|\mu(A_{i}) - \mu(A_{i-1})| \right) \middle| \emptyset = A_{0} \subset A_{1} \subset \cdots \subset A_{n} = A, \{A_{i}\}_{i=0}^{n} \subset \mathcal{F} \right\}$$

$$\mu_{\Phi}^{+}(A) = \sup \left\{ \sum_{i=1}^{n} \phi_{i} \left([\mu(A_{i}) - \mu(A_{i-1})]^{+} \right) \middle| \emptyset = A_{0} \subset A_{1} \subset \cdots \subset A_{n} = A, \{A_{i}\}_{i=0}^{n} \subset \mathcal{F} \right\}$$

$$\mu_{\Phi}^{-}(A) = \sup \left\{ \sum_{i=1}^{n} \phi_{i} \left([\mu(A_{i}) - \mu(A_{i-1})]^{-} \right) \middle| \emptyset = A_{0} \subset A_{1} \subset \cdots \subset A_{n} = A, \{A_{i}\}_{i=0}^{n} \subset \mathcal{F} \right\},$$

where $[r]^+ = \max\{r, 0\}$ and $[r]^- = \max\{-r, 0\}$. We call $|\mu|_{\Phi}$, μ_{Φ}^+ , and μ_{Φ}^- , the total Φ -variation, positive total Φ -variation, negative total Φ -variation of μ , respectively.

Definition 2.11. Let μ be a non-monotonic fuzzy measure on (X, \mathcal{F}) of Φ -bounded variation and let Φ be either a Φ -sequence or a Φ -sequence. Then μ_{Φ} is defined by

$$\mu_{\Phi}(A) = \mu_{\Phi}^{+}(A) - \mu_{\Phi}^{-}(A), \text{ for each } A \in \mathcal{F}$$

In this case, we say that μ_{Φ} is a non-monotonic fuzzy Φ - measure on (X, \mathcal{F}) .

We denote the set of monotonic fuzzy measures of Φ -bounded variation on (X, \mathcal{F}) by $\Phi FM(X, \mathcal{F})$. From Definitions 2.10 and 2.11, clearly, we obtain the following proposition.

proposition 2.12. Let $\mu \in \Phi BV(X, \mathcal{F})$. Then

- (i) $\mu_{\Phi}^+, \mu_{\Phi}^- \in \Phi FM(X, \mathcal{F}).$
- (ii) $\mu_{\Phi} \leq |\mu|_{\Phi}$.
- (iii) $\Phi V(\mu) = \mu_{\Phi}^+(X) + \mu_{\Phi}^-(X)$.

We denote the set of a non-monotonic fuzzy Φ -measure on (X, \mathcal{F}) by $\Phi \mathcal{B} V_0(X, \mathcal{F})$ and define the norm $\|\cdot\|_0$ by

$$\|\mu_{\Phi}\|_{0} = \mu_{\Phi}^{+}(X) + \mu_{\Phi}^{-}(X)$$
 for each $\mu_{\Phi} \in \Phi \mathcal{B} V_{0}(X, \mathcal{F})$

Proposition 2.13.

- (i) $\|\cdot\|_0$ is a norm on $\Phi \mathcal{B}V_0(X,\mathcal{F})$
- (ii) $(\Phi \mathcal{B}V(X,\mathcal{F}), \|\cdot\|_{\Phi})$ is isometrically isomorphic to $(\Phi \mathcal{B}V_0(X,\mathcal{F}), \|\cdot\|_0)$.

Proof: Since $\|\mu\|_0 = \|\mu\|_{\Phi}$ for each $\mu_{\Phi} \in \Phi BV_0(X, \mathcal{F})$, the Theorem 2.8 implies (i) and (ii).

We denote the set of monotonic fuzzy Φ -measures on (X, \mathcal{F}) by $\Phi F M_0(X, \mathcal{F})$.

Proposition 2.14. $\Phi BV_0(X, \mathcal{F}) = \Phi FM_0(X, \mathcal{F}) - \Phi FM_0(X, \mathcal{F})$

Proof: Let $\mu_{\Phi} \in \Phi \mathcal{B}V_0(X,\mathcal{F})$. By the definition 2.11, $\mu_{\Phi} = \mu_{\Phi}^+ - \mu_{\Phi}^-$. The proposition 2.12 (i) implies that $\mu_{\Phi} \in \Phi F M_0(X,\mathcal{F}) - \Phi F V_0(X,\mathcal{F})$. Since $\Phi \mathcal{B}V(X,\mathcal{F})$ is a real Banach space, by the proposition 2.13 (ii), $\Phi \mathcal{B}V_0(X,\mathcal{F})$ is a real Banach space with the norm $\|\cdot\|_0$. Since $\Phi F M_0(X,\mathcal{F})$ is a subspace of a real Banach space $\Phi \mathcal{B}V_0(X,\mathcal{F})$, $\Phi F M_0(X,\mathcal{F}) - \Phi F M_0(X,\mathcal{F}) \subset \Phi \mathcal{B}V_0(X,\mathcal{F})$.

The variations $|\mu|_{\Phi}$, μ_{ϕ}^{+} and μ_{Φ}^{-} have the following properties.

Proposition 2.15. Let μ_{Φ} , $\nu_{\Phi} \in \Phi BV_0(X, \mathcal{F})$ and $\alpha \in R$ with $|\alpha| < 1$

- (i) $|\mu|_{\Phi} = \mu_{\Phi}^+ + \mu_{\Phi}^-$
- (ii) $\mu_{\Phi}^{+} = \frac{1}{2}(|\mu|_{\Phi} + \mu_{\Phi}), \ \mu_{\Phi}^{-} = \frac{1}{2}(|\mu|_{\Phi} \mu_{\Phi})$
- (iii) $\mu_{\Phi}^{-} = (-\mu_{\Phi})^{-}$
- (iv) $|\mu|_{\Phi} = 0 \iff \mu_{\Phi} = 0$
- $(v) |\alpha \mu|_{\Phi} \leq |\alpha| |\mu|_{\Phi}$

Proof: Part (i) is essentially the same as proposition 2.12 (iii). Part (ii) is clear from (i) and the definition of μ_{Φ} . Part (iii) - (iv) are immediate consequences of the definition of μ_{Φ} . Since ϕ is an increasing convex function, and $|\alpha| < 1$, we have that $\phi(|\alpha|x) \le |\alpha|\phi(x)$ for all $x \ge 0$. This fact and the definition of μ_{Φ} imply Part (v).

References

- [1]. T. Murofushi, M. Sugeno and Motoya Machida, Non-monotonic fuzzy measures and the Choquet integral, Fuzzy Sets and System 64 (1994), 73-86.
- [2]. M. Schramn, Function of Φ-bounded variation and Riemann-Stieltjes integration, Trans A.M.S 287 (1985), 49-63.
- [3]. T. Terano, K. Asai and M. Sugeno, Fuzzy System Theory and its Applications, Fuzzy Sets and System (1987).
- [4]. Z. Wang and G. J. Klir, Fuzzy Measures Theory, New York (1992).
- [5]. O. Zhong, On fuzzy measure and Fuzzy integral on Fussy set, Fuzzy Sets and System 37 (1990), 77-92.