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Abstract
This paper discuss some properties of non-monotonic fuzzy measures of ®-bounded variation. We show
that there is an example of ® such that BV (X, F) is a proper subspace of ®8V (X, F). And also. we prove
that ®BV (X, F) is a real Banach space. Furthermore, we investigate some properties of non-monotonic

fuzzy ®-measures.

1. Introduction.

In T. Murofushi, M. Sugeno and M. Machida[1], they discussed non-monotonic fuzzy measures, which
are sel, functions without monotonicity. And also they studied the space of non-monotonic fuzzy measures
of bounded variation and investigate some properties of a non-monotonic fuzzy measure of bounded
variation. But the fuzzy measure in the sense of Sugeno[3], Q. Z. Wang[4], and Zhong(5] is a monotonic
set function. In this paper, we introduce the concept of non-monotonic fuzzy measures of ®-bounded
variation, where ® = {¢,} is a sequence of increasing convex functions, defined on the nonnegative real
numbers, such that ¢,(0) =0 and ¢,(z) >0 forz >0andn=12,.--.

We say that ® is a ®*-sequence if and only if ¢, 1(2) < ¢nu(z) for all n and z, and a ®-sequence if
in additon 3, ¢n(z) diverges for £ > 0. These definitions were introduced in M. Schramn[2]. In section

2, we introduce non-monotonic fuzzy meaures of ®-bounded variation and discuss some properties of
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these fuzzy measures. And also, we prove that ®BV (X, F), ®BVy(X, F) are real Banach spaces and
that ® BV (X, F) is isometrically isomorphic to ® BVy(X, F). Furthermore, we will define non-monotonic

fuzzy ®-measures and discuss some properties of non-monotonic fuzzy ®-measures.

2. Non-monotonic fuzzy measures of ®-bounded variation.

Throughout the paper we assume that (X, F) is a measurable space.

Definition 2.1. A fuzzy measure on (X, F) is a real-valued set function ) : F — R* satisfying
(i) A(0) =0
(ii) AM(A) < M(B) whenever A C B and A, B € F where R* = [0, 00), the set of nonnegative real numbers.

Definition 2.2. A non-monotonic fuzzy measure on (X, F) is a real-valued set function p : ¥ — R*

satisfying u(8) = 0.

In [2], the total variation V() of 4 on X is defined by
V(p) = sup {Zl/‘(Ai) —pAicld=AoCc A CCA= X, {Adl,C 7"} '
i=1
A real-valued set function u is said to be of bounded variation if and only if V(s) < co. And also, we
introduce the following definitions of non-monotonic fuzzy measures of ®-bounded variation and total

$-vartation.

Definition 2.3. Let ® = {¢,} be either a ®*-sequence or a ®-sequence. For a given real-valued set

function p : F — R, the total ®-variation ®V (u) of u on X is defined by

®V(4) = sup {Z Si(lm(A) — w(Aic)D|0 = Ao C A1 C -+ C A = X {AE C f}

i=1

A real-valued set function p is said to be of ®-bounded variation if and only if ®V (u) < oc.

Then it is easy to show that if & = {¢,} and ¢,(z) = z for each n, then u is of ®-bounded variation

if and only if u is of bounded variation.

Definition 2.4. The family {¢,} is called the uniformly equicontinuous on R if there is a positive

constant M, independent of n € N and z,y € R, such that
l6n(z) = dn(y)| < Mlz -y (2-1)

We note that if ® is equicontinuous on R and if r = {u(A4;) — p(Ai-1)| and y = 0, then ¢, (ju(A4;) -
p(Ai-1)]) < Mlu(A;) — p(Ai-1)] for n = 1,2,3,---. Hence, we note that this definition of ®-bounded

variation is a notion of generalized of bounded variation.
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Proposition 2.5. Let ® = {¢,} be as in the Definition 2.3. If in addtion, & = {#n} is uniformly

equicontinuous, then a monotonic fuzzy measure A is of ®-bounded variation.

Proof: Since {¢,} is uniformly equicontinuous, there exist a positive constant M such that {¢n} satisfies

(2-1). Hence

dV()) = sup {Xn:qﬁi(]/\(/l,-) — AAi-1))) I@ =AgCAC- - CA.= X {A}, C f}
i=1

< sup {Z MIA(A) = A(Ai)|

i=1

=MV(A) = MMX) < oo

@:AOCA1CCAn=Xy{Az}."=0CT}

Therefore A is of ®-bounded variation.

We denote the set of monotonic fuzzy measures on (X, F) by FM (X, F) and the set of non- monotonic
fuzzy measures of ®-bounded variation on (X, F) by ®BV(X,F). Let ® be as in the definition 2.3
and g a non-monotonic fuzzy measure on (X, F). Then, definition 2.3 implies that y is of ®-bounded
variation if and only if there is an M < oo such that for every finite collection {4;}, C F with
P=A)CAC-- CA, =X, )

D6 (n(A) = p(A)l) < M

i=1
Let ¢n(z) = % for n = 1,2, --. Then, it is clearly to show that BV (X,F) C ®BV(X,F) and that the
converse of implication is not true, that is, the following example 2.6 implies that ®-bounded variation

is some generalization of bounded variation.

Example 2.6. Let A be the Lebesque measure on ([0, 1], B), where B is the class of all Borel subsets of
the unit interval [0,1], and let h(z) = zsin (L), for all ¢ € (0, 1], h(0) = 0, and s = h - A. Since ¢ is not
of bounded variation, it is easy to see that the set function p is a non-monotonic fuzzy measure that is
not of bounded variation. Since ¢n(z) = 5, @ = {¢n} is a D*-sequence and hence, p is of ®-bounded

variation.

We recall that if ¢ is an increasing convex function, ¢(0) =0, « > 0 and 0 < a < 1, we have
$laz) < aé(z)

We define a norm as follows : for every p € BV (X, F),

lells = inf{k >0:0V (%) < 1}.

—316—



Proposition 2.7. Let p be a non-monotonic fuzzy measure in ®$BV (X, F). Then, we have that

ﬁ)@V(ﬁh)gl

(i) if ||lulle < 1, then @V (u) < |lulle

Proof: (i) Take k > ||u||o; then, the definition of |{|ulle implies that for any finite collection
{AiYP o CF with 8=ACAC-- - CA, =X,

we have
(a0 ) <ov (2) 51
Thus

)=t S (a1

kwmu_l

2 Oupu@‘ )= T (e

i=1
which implies (i).
(i) Since ||plle <1,

& A Ai- < l ¢z i Az
< ||#H<I>
Theorem 2.8. ®BV (X, F) is a normed vector space with a norm || - ||

Proof: Let p,v € ®BV(X,F) and c € R.

(1) Since ¢, is increasing convex for each n, for each k; > & >0

w( )—supzqs,(‘”m :1“““"')
=supi\;¢f( £ - Beas 1)|)
< supé :—1@ (|&a0 - 2ean])
<o 3o (2080~ Hos)
=ov (L)

Thus, by part (i) of the proposition 2.7, {k > 0: @V (£) < 1} = [|lulle, ).

Clearly ||ulle = 0 if 4 = 0. Conversely if u # 0, let A € F be such that u(A) # 0, then

o (8) 20 (1)
2 %4’1 (I—;—‘—i—én> fork, < k.

1
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As k — 0, 1‘;‘-451 (M‘%)_l) — oo , and hence ®V{§) — co. Thus there is a k > 0 so that @V (%) > 1, and
so Jjulle # 0;
(ii)

llenlie

inf{k>0) v(%) < }
()

(iit) Since each ¢; is increasing convex for each i = 1,2,3,---.

i

inf{lc>0

= [clllulle

1+ 0)(AS) - (s + 0)(Air)]
;"" ( Talle+ 7 Ts )

< Zﬂ:‘ﬁi (l#(&'q) — (A} + |v(A) - V(Ai—l)l)
i=1

ulle + Hvlle
o~ Hulle lIvlle [p(Aic ) = p(AD] + Jv(Ai) = v(4ioa)]
=2 % <[Hu|l<1> vl | Talle + ||V||<I>] lislle + lIvile )
=~ llplle  lp(Ai1) — p(Ai)l Iwlle  lv(Aic1) = v(A:)]
B <||#||¢ +ivlle  llulle +llvlie lklle + llvle  Nulle +llvle )

- llulle A 1p(Aimr) — p(Ai)] Ivlle (1o(Ai1) — v(4i)]
< Z { llxlle + ||V||<I>¢' ( [l1lle ) * lelle + vl i ( Ille )}

_ el e Ai1) = (4] Irlle < [ Io(Aimy) = v(A)]
|u||¢+nun¢2¢'< lefls )+l|#ll¢+llV|l¢;é'( livTle )

<1

Hence, &V (Wﬂfﬂl_"ﬁ) < 1. By the Definition of || - {|g, we have
s+ vlle < lplle +vlle.

Therefore, || - ||¢ is a norm on ®BV (X, F). And also, (i} and (ii) implies that ®BV (X, F) is a vector
space.

Theorem 2.9. ®BV (X, F) is a real Banach space with the norm || - ||o.

Proof: Let y and v be fuzzy measure in ®BV (X, F) such that ||u — vile < £ < L. Since HSLS"ZIJ& < i,

<1>v<“"’) <1
&

o (A=A gy (=)

3

so, by proposition 2.7,

Now for each A € F,
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This implies that if {un} is a Cauchy sequence in this norm || ||, {#n(A)} is a Cauchy sequence in R for
each A € F. Thus, there is a real-valued set function u such that p,(A4) — u(A) in R for each A € F.
We note that yum(@) = 0 for alln =1,2,---. Since pm(8) — (), u(#) = 0. Hence g is a non-monotonic
fuzzy measure on (X, F). Let € > 0 be given, {A;}7_, a finite collection, and suppose that there is some

positive integer No such that for any m,l > N, {jum — pilla < €, then

'};@ ( )
= lim Zn:dn (’(/‘m = p)(Ad) = (pm — p1)(Ai21) ‘)
o0 £

£

(Bm — #)(Ai) ~ (pm — p)(Aisy)
£

Thus @V (£2=£) <1, and so ®V(um — i) < €. Hence, pyn — g in this norm || - lle. And also, we have

SV () = OV (p — tim + pm) < OV (pt — pm) + OV ()

<e+dV(um) < co.

Thus 4 € #BV (X, F).

Definition 2.10. For every pu € ®BV (X, F), we define

|ula(4) = sup {Zdn (1A = p(Ai1)) lw = AgC A C o C An = A (Al C }'}
i=1

p3(A) = sup {Zdu (IA) = p(Ac)]T) [0 = A0 C A1 C - C Ap = A A, C f}
=1

Ha(A) = SUP{Z¢* ([u(Ad) = B(Aiz1)]7) l@ =ACAIC CA=A{A}, C f} ,
i=1

where [r]* = max{r,0} and [r]~ = max{-r,0}. We call |u|¢, p}, and p3, the total ®-variation, positive

total ®-variation, negative total ®-variation of u, respectively.

Definition 2.11. Let y be a non-mouotonic fuzzy measure on (X, F) of ®-bounded variation and let ®

be either a ®*-sequence or a ®-sequence. Then ug is defined by
ue(A) = ug(A) ~ pg(A), foreach AeF

In this case, we say that pa is a non-monotonic fuzzy ®- measure on (X, F).

We denote the set of monotonic fuzzy measures of ®-bounded variation on (X, F) by SFM(X,F).

From Definitions 2.10 and 2.11, clearly, we obtain the following proposition.
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proposition 2.12. Let p € ®BV (X, F). Then
(i) ug, w3 € BFM(X, 7).
(ii) pe < lple.
(iii) BV (1) = p(X) + g (X).
We denote the set of a non-monotonic fuzzy $-measure on (X, F) by ®BV,(.X, F) and define the norm

I 1lo by
lusllo = u3(X) + ug(X) for each ug € BBVH(X, F)

Proposition 2.13.
(1)) |- llo is a norm on ®BV,(X, F)
(ii) (8BV (X, F),|| - |l8) is isometrically isomorphic to (®BVo(X, F), || - llo)-

Proof: Since {lullo = ||plle for each pe € ®BVo(X, F), the Theorem 2.8 implies (i) and (ii).
We denote the set of monotonic fuzzy ®-measures on (X, F) by ®F My(X, F).
Proposition 2.14. ®BV(X, F) = ®FMo(X,F)— ®FMy(X, F)

Proof: Let up € ®BVy(X,F). By the definition 2.11, pe = p} — uz. The proposition 2.12 (i) implies
that pue € ®FMo(X,F) — ®FVu(X,F). Since ®BV(X,F) is a real Banach space, by the proposition
2.13 (it), ®BVo(X, F) is a real Banach space with the norm || - ||o. Since ®F My(X, F) is a subspace of a
real Banach space ®BVy(X, F),PF Mo(X,F) — ®FMy(X,F) C ®BVy(X, F).

The variations |u|e, pI and pg have the following properties.

Proposition 2.15. Let pg, ve € ®BVH(X, F) and a € R with |a} < 1

(i) lule = p + 43

(i) p} = Hiple + po), g = 3(lule — po)

(iii) pg = (—pe)”

(iv) lnle =0 <= pe =0

(v) laple < lallple
Proof: Part (i) is essentially the same as proposition 2.12 (iii). Part (ii) is clear from (i} and the definition
of pg. Part (iii) - (iv) are immediate consequences of the definition of xg.Since ¢ is an increasing convex
function, and |a| < 1, we have that ¢(|a|z) < |a|¢(z) for all z > 0. This fact and the definition of ue

imply Part (v).
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