[IV~10] ## Effect of SiF₄ addition on the structures of silicon films deposited at low temperature by remote plasma enhanced chemical vapor deposition Xiaodong Li***, Young-Bae Park*, Dong-Hwan Kim* and Shi-Woo Rhee* * Laboratory for Advanced Materials Processing (LAMP), Department of Chemical Engineering Pohang University of Science and Technology (POSTECH), San 31 Hyoja Dong, Pohang, Kyungbuk, 790-784, Republic of Korea Department of Metals and Technology, Harbin Institute of Technology, Harbin 50001, P.R. China ## **ABSTRACT** Silicon films were deposited at 430° C by remote plasma chemical vapor deposition (RPECVD) with a gas mixture of Si₂H₆/SiF₄/H₂. The silicon films deposited without and with SiF₄ were characterized using atomic force microscopy (AFM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Both silicon films have the same rugged surface morphology, but, the silicon film deposited with SiF₄ exhibits more rugged. The silicon film deposited without SiF₄ is amorphous, whereas the silicon film deposited with SiF₄ is polycrystallline with very mall need-like grains which are perpendicular to the substrate and uniformly distributed in the thickness of the film. The silicon film deposited with SiF₄ was found to have a preferred orientation along the growth direction with the <110> of the film parallel to the <111> of the substrate. The effect of SiF₄ during RPECVD was discussed.