Proceedings of the Korean Operations and Management Science Society Conference (한국경영과학회:학술대회논문집)
- 1995.04a
- /
- Pages.869-879
- /
- 1995
Linear decentralized learning control for the robot moving on the horizontal plane
Abstract
The new field of learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this task. The simplest forms of learning control are based on the same concept as integral control, but operating in the domain of the repetitions of the task. In the previous paper, I had studied the use of such controllers in a decentralized system, such as a robot with the controller for each link acting independently. The basic result of the paper is to show that stability of the learning controllers for all subsystems when the coupling between subsystems is turned off, assures stability of the decentralized learning in the coupled system, provided that the sample time in the digital learning controller is sufficiently short. In this paper, we present two examples. The first illustrates the effect of coupling between subsystems in the system dynamics, and the second studies the application of decentralized learning control to robot problems. The latter example illustrates the application of decentralized learning control to nonlinear systems, and also studies the effect of the coupling between subsystems introduced in the input matrix by the discretization of the system equations. The conclusion is that for sufficiently small learning gain, and sufficiently small sample time, the simple learning control law based on integral control applied to each robot axis will produce zero tracking error in spite o the dynamic coupling in the robot equations. Of course, the results of this paper have much more general application than just to the robotics tracking problem. Convergence in decentralized systems is seen to depend only on the input and output matrices, provided the sample time is suffiently small.
Keywords