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ABSTRACT

In this paper, we develop detailed algorithms for implementing the so-called Limited Column Generation
procedure for Local Access Telecommunication Network (LATN) Design problem. We formulate the problem
into a tree—partitioning problem with an exponential number of variables. Its linear programming relaxation
has all integral vertices, and can be solved by the Limited Column Generation procedure in just n pivots,
where n is the number of nodes in the network. Prior to each pivot, an entering variable is selected by
detecting the Locally Most Violated (LMV) reduced cost, which can be obtained by solving a subproblem in
pseudo-polynomial time. A critical step in the Limited Column Generation is to find all the LMV reduced
costs. As dual variables are updated at each pivot, the reduced costs have to be computed in an on-line
fashion. An efficient implementation is developed to execute such a task so that the LATN Design problem
can be solved in O(n2H), where H is the maximum concentrator capacity. Our computational experiments
indicate that our algorithm delivers an outstanding performance. For instance, the LATN Design problem
with n = 150 and H = 1000 can be solved in approximately 67 seconds on a SUN SPARC 1000 workstation.

1 Introduction

The telecommunication industry is undergoing rapid and fundamental change. Technological innovation
creates new market opportunities and growing customer demand for enhanced products and services such as
multimedia applications. The ongoing legislative regulatory reform is reshaping the structure and business
practice of major industry segments. The federal government has challenged the private sector to participate
in an effort to modernize the nation’s entire information infrastructure by building the “information super—
highway.” As a result, many major telecommunication service providers are in the process of upgrading
and expanding their facilities and services. The planning and design of various types of telecommunication
networks plays an important role in this process. It is well known that optimization techniques can be used
to optimize network design. In this paper, we study a portion of the telecommunication system, the Local
Access Telecommunication Network (LATN).

Most existing LATNs have a tree structure. Each customer node has a demand representing the required
number of circuits from that node to the switching center. This demand can be satisfied by either connecting
the node directly through a cable to the switching center, or routing it first to a concentrator which compresses
the incoming traffic into a higher frequency signal that requires fewer outgoing lines. The objective of the
LATN Design and Expansion problem is to make a trade—off between cable expansion and concentrator
installation to minimize the total cost.

Recently, many researchers have been working on the LATN Design and Expansion problems, which are
NP-complete problems since they include the Knapsack Problem as a special case. A discussion of the
modeling issues can be found in Balakrishnan et ol [3], and a Lagrangian relaxation based approach has



been developed by Balakrishnan, Magnanti and Wong [4]. Aghezzaf, Magnanti and Wolsey [2] studied the
combinatorial structure of the model. A related but different model was formulated by Cook [11], and a
solution procedure and related knapsack-type problem have also been studied by Bienstock [6, 7].

A so-called Limited Column Generation procedure was developed by Shaw [18, 19]. The LATN Design
and Expansion problem is first formulated as a tree-partitioning problem with an exponential number of
variables, each of which corresponds to a subtree (see Shaw [19]). Chvatal [10] and Gavril [12] have shown
that the polyhedron of its linear programming relaxation is integral. Hence, the tree-partitioning problem can
be simply reduced to a linear program (with an exponential number of variables, though). Then, a dedicated
column generation procedure is developed so that the linear program can be solved in just n+ 1 pivots (n+1
is the number of nodes in the tree). Prior to each pivot, a so—called Locally Most Violated (LMYV) reduced
cost has to be computed to decide the entering variable.

Based on the framework of the Limited Column Generation procedure, one of our main results is to
design and implement detailed algorithms for the LATN Design and Expansion problems. Our computational
experiments indicate that the Limited Column Generation is a very efficient approach for these models. The
LATN Design problem with 150 nodes can be solved in approximately 67 seconds on a SUN SPARC 1000
workstation.

The LMV reduced cost can be obtained by solving n subproblems, each of which is the Tree Knapsack
Problem (TKP) and has been studied by Cho and Shaw [8], Johnson and Niemi [15}, Lukes [17], and Shaw [1].
Johnson and Niemi [15] solved the TKP by the so-called “left-right” dynamic programming algorithm with
a running time of O(nC*), where C* is the optimal value of the TKP. Recently, Cho and Shaw [9] proposed
the so-called “depth-first” dynamic programming algorithm with a running time of O(nH) which can be
regarded as a refinement of Johnson and Niemi [15].

The Limited Column Generation procedure requires that the LMV reduced costs are checked in a bottom-
up order. The reversed Depth-First-Search (DFS) order and the reversed Breadth—First-Search (BFS) order
are two typical examples of the bottom—up order. A bottom-up dynamic programming procedure developed
by Shaw [19] for the TKP runs in O(nH?) time and can be combined with the Limited Column Generation
procedure to solve the LATN Design problem in O(n2H?), where H is the maximum concentrator capacity.

A straight-forward approach for combining Limited Column Generation with a low complexity TKP solver
such as the “depth-first” dynamic programming algorithm developed by Cho and Shaw [9] leads to an O(n3H)
algorithm for the LATN Design problem because n + 1 pivots are required and prior to each pivot, n CTKPs
have to be solved, each of which requires O(nH) time. However, as reduced costs are related to the dual
variables, which are updated at each iteration, the LMV reduced costs have to be computed in an on-line
fashion. The main result of this paper is to develop an efficient on-line implementation which recursively
computes all the LMV reduced costs in the total of O(n?H) time for the LATN Design problem. As a result,
we obtain an algorithm for the problem with the overall complexity of O(n?H).

This paper is organized as follows. In Section 2 we present the fixed—charge network formulations for the
LATN Design and Expansion problems, and then we describe the Limited Column Generation procedure for
the LATN Design problem and its implementatioan in Section 3. In Section 4 we present an on-line recursive
procedure for computing all the LMV reduced costs. The implementation detail for the LATN Design problem
is presented in Section 5, and we present our computational test results in Section 6.

2 Problem Description

In this section, we describe the LATN Design and Expansion problems in detail. The LATN is a tree rooted
at the switch center, and each non-root node is a customer node and is associated with a demand, which
represents the number of circuits required from the customer node to the switching center. This demand
can be satisfied by either connecting a cable from the customer node to the switching center or routing the
circuits to a concentrator which compresses the incoming traffic into a higher frequency signal that requires
fewer outgoing cables. A variety of electronic devices can perform traffic compression through frequency
division or time division such as concentrators, multiplexers, remote switches and fiber optical terminals.
Since these devices perform essentially equivalent functions from our modeling point of view, we collectively
refer to them as concentrators. In this paper, we assume that the compressed signal requires a dedicated
cable point-to-point (home-run) routing to the switching center. The LATN Expansion problem is to make
tradeoff between installing concentrators and expanding cable capacities that already exist along the arcs in



order to minimize the total cost. The LATN Design problem is its special case, where all of the existing cable
capacities along the arcs are equal to zero.

Let T = (V, E) be an undirected tree rooted at the switching center labeled as node 0, representing the
layout of the LATN. Then, without loss of generality, we assume that all nodes in T" are labeled by the Depth-
First-Search (DFS) order. Let P[i, j] be a unique path on tree T from node i to node j. Let S(i) = {jlp; = i}
be the set of successors of node i, where p; is the predecessor of node j. We denote pj as the predecessor of
node j with respect to node i, which is defined as the first node other than node j on_Ehe path P[j,{]. By

labeling arc (pi,i) and arc (¢,p;) as arc i and arc —i respectively, a directed network T is derived from T.

Let A be the node-arc incidence matrix of the directed graph 7' which excludes the first row corresponding
to node 0.

We denote d; as the demand at node i for : = 1,2, ---,n. The total investment on the LATN involves two
categories of costs: the concentrator installation and cable expansion.

Suppose there are m different capacities for concentrator modules. A concentrator with capacity h' can
be installed at node ¢ with the fixed cost F‘i‘, which represents the concentrator purchase cost and installation
costs as well as other infrastructure investment, and there is also a variable concentrator cost ¢; representing
the operating expenses, where i = 0,1,2,---,n,and t = 1,2,---,m. We assume h' < h? < --- < ™. In this
paper, we regard the concentrator as an “aggregate concentrator” and assume that at most one concentrator
can be installed at each node. More general models are discussed in Shaw [1].

The existing cable capacity on arc i is b; for all ¢ = +1,£2,- -, n, and b; = b_;, as all cables are two-way.
If the cable requirement on arc i exceeds the existing capacity b;, a fixed cable expansion cost Fj as well as a
marginal variable cable expansion cost of ¢; occurs, where ¢ = +1,+2,---,+n. The fixed cost represents the
expenses for digging trenches and laying pipes on arc 4, while the variable cost represents the cable purchasing
and maintenance cost on arc 1.

Now we introduce the decision variables as follows. Let #; be the load of the concentrator at node 7,
i=0,1,2,---,n and z; be the cable requirement on arc 7, ¢ = +1,%2,---,£n. Then we set

T =z, +
where 0 < z} < b;, and z}’ is the amount of the cable expansion beyond existing capacity, fori = £1,£2,---, xn.

We also define binary variables as follows:

L [1 if >0

v = 0 otherwise, 1=41,42,---.%n,

" 1 if z/>0
g o= . ,

' 0 otherwise, ¢=+142,---,&n,

and
G 1 if h'is used at node i
i = 0 otherwise, i=0,1,2,---,nand¢t=1,2,---,m.

In practice, to reduce the complexity of network planning, management and maintenance, some restric-
tions are imposed on the routing patterns by planners. To simplify the problem, we also make additional
assumptions. A discussion of these assumptions can be found in Balakrishnan et al. [3] and Balakrishnan,
Magnanti, and Wong [4]. These restrictions can be summarized as follows:

1. Only one-level traffic compression is allowed (i.e., all demands can be compressed at most once before
reaching the switching center).

2. The compressed signals are point-to-point routed to the switching center through a dedicated cable (for
example, fiber optics).

3. The non-bifurcated routing, that is, all circuits from one customer node must follow the same routing
pattern. Clearly, to make such an assumption, we have to assume h™ > d; fori =1,2,---,n.



4. The contiguity restriction, that is, if node j’s traffic is compressed by a concentrator located at node i,
then traffic from all nodes on path P[i, ;] is compressed by the same concentrator located at node i. In
particular, if a concentrator is installed at node 7, then the demand at node i should be routed to that
concentrator.

Based on the above discussion, the LATN Expansion problem can be formulated as the following special
fixed-charge network flow problem (E):

min Tz + FTy' +Ts + Z(F’)Tg‘ (2.1)
t=1

st. A('+z")+2=d (2.2)
0<z' <bxy (2.3)

0<z" < My’ (2.4)

(E) 0<&< ) by (2.5)

t=1
m

=1 e jes()

v>y (2.7)

v, v €{0,1}" ¢ € {0,1}",

n
where M = E dr and “*” denotes the component by component product.
k=1

The objective function (2.1) seeks to minimize the sum of the cable and the concentrator installation costs.
Constraints (2.2) specify the flow conservation constraints, that is, the amount of traffic coming into node
¢ minus the amount of traffic going out from node i plus the load of concentrator located at node i should
be exactly equal to the demand d; at node i. Constraints (2.3) and (2.4) are simply the upper bounds for
the existing cable capacity and for the cable expansion requirement, respectively. Constraints (2.6) imply

m
Z 9 <1, which means that only one type of concentrator modules can be used at each node. Constraints
t=1

(2.6) and (2.7) together state that the demand at node i is satisfied from either one of the incoming arcs or
a concentrator installed at that node, which reflect the non-bifurcated routing and contiguity assumptions.
Obviously, constraints (1.7) simply states that if the existing cable capacity on arc ¢ is not used then cable
expansion should not occur on arc .

In the LATN Design problem, the existing cable capacity b; on arc i is zero for all i = +1,+2,--. £n.
Therefore, we eliminate constraints (1.3) and (1.7) in (E), and set 2’ = 0, z = 2", and y = y". Then we have

m

yi + Z 3}: + Z y-j = 1. The following is the fixed-charge network flow formulation for the LATN Design
t=1 JES(i)

problem (D);

m
min Tz + FTy+¢éTs 4+ Z(F‘)Tg'
t=1

st. Ar+i=d

(D) 0<z< ) A



m

Y w3 =l i=12

t=1 JES()

n

y € {0.1}2, g* € {0,1}", where M = > dx.
k=1

In the next section, we introduce a tree partitioning formulation and the Limited Column Generation
procedure for the LATN Design and Expansion problem developed by Shaw [18].

3 Tree Partitioning Formulation and Limited Column Generation
Procedure

Because of the contiguity assumption, the set of nodes allocated to the same concentrator forms a subtree of
T. Hence. we can formulate the LATN Design problem as a tree partitioning problem (see Cho [8]) for the
LATN Expansion problem).

We define the routing cost ¢;; from node j to a concentrator location i for the LATN Design problem as
follows : for i =0,1,2,---,nand j=1,2.---.n,

di(éi+ Y )+ Fj if j¢ P[i.0]
keN,,
Gy =9 diG+ Y )+ Fo,if jePEON (i} (3.1)
keN,,
djé; otherwise,

where R is the set of arcs on the path P[i. j] from node i to node j.

Let T be a subtree of T rooted at node k. Then, we assume that a node is in 7 if and only if it is served
by a concentrator located at node f inside T, which is called the center of T. We also assume that if 0 € T
then the center of T is node 0. We now define the total cost ¢ of T with the center i as

: e q
r =Y o+ FF (3.2)
JET
where t* = min {t | Zd_,- <AL t=1.2.--.m}
JET
Let e = mi}x ¢ be the cost of assigning all nodes in T to a common concentrator.
t€

Then, the LATN Design problem can be reformulated as follows:

min ¢’

(PY st GE&E=1
S € {0 1} for all subtree I,

where ¢ = (c7). &€ = (&7) and G is a node subtree incidence matrix.

As the intersection graph of G is a chordal graph and. of course. a perfect graph (for detail. see Chvatal [10].
1

Gavril 112}, Golumbic {14]. and Levasz (1%, the linear programming relaxation of { P has all integral vertices.



Shaw [18] presents an elementary proof that the linear programming relaxation of (P) always has an integer
optimal solution. Therefore, (P) can be written as

min ¢7¢
(P) st. G¢=1
&r €[0,1] for all subtree T.

Since the number of columns in G can be an exponential number in terms of n, a natural way to solve
this problem is to use a column generation technique, which was first proposed by Gilmore and Gomory [13].
However, because of the special structure of our problem, much better results can be achieved. Shaw [18] has
shown that there exists a pivot rule which selects the so-called Locally Most Violated (LMV) reduced cost
and solves (P) in just n + 1 pivots.

Let B be the (n+ 1) x (n + 1) basis for the system of constraints in (P) and ; be the dual variable of

node i (or i-th constraint) in (P) for i =0,1,2,---,n. Then the reduced cost of a variable &7 is
7Tv = Z T —CT.
€T
The Locally Most Violated (LMV) reduced cost v} is defined as
no= e
= 7,

where Ty = arg (??.xk vr and r(T) = min{k|k € T} is the root of T (recall that the node in 7" is labeled by
DFS order).

Initially, we partition 7" into singleton sets {k} for k = 0,1,2,---,n (ie., T = UP_o{k}). This can
be interpreted as the case that every node has its own “concentrator.” In such a case, the basis B is an
(n+ 1) x (n + 1) identity matrix I and the dual variable 7} is

™= o
= dkék+ﬁ';;,
where t; = min{t|dy <h', t=1,2,---,m}and k=0,1,---,n.

— n+41 _ k
Let lT; =(n)€ER , where v = { 0 therwise.

Now, the Limited Column Generation procedure developed by Shaw [18] can be formally described as follows:

Algorithm 1. Limited Column Generation;

begin
{comment: Initialization}

B =1

fork:=0upto n do T I= C{x};
{comment: Main Loop}

for k:=ndownto 0 do

begin

Find_v; {comment: y; = max yr = 1y }

r(T)=k
if (v > 0) then
replace k—th column of B by ry;



T 1= Tk — Yk
Update_v;;
end if

end

n
opt_value 1= Z T}
k=0
Opt_Solution;
end

Theorem 1. If the LMV reduced cost is given at each pivot, then the LATN Design problem can be solved by
Algorithm 1 which essentially takes n+1 simplez pivots.

The proof of Theorem 1 can be found in Shaw [18]. Because of Theorem 1, a critical step for solving
the LATN Design problem is to find the LMV reduced costs by the procedure Find_7; at each pivot. As
v depends on {mi|i € T(k)}, which is updated at each iteration, we show in the next section how the set
{7vilk = n,n—1,- .+,0} can be computed recursively in an on-line fashion. The procedures Find_y; and
Update_y} are given in the next section.

Lemma 3.1. If we exclude the computational time for computing Find_v} and Update_y;, then Algorithm
1 can be terminated in O(n?) time.

Proof: As replacing a column of B takes O(n) time and there are n + 1 iterations in Algorithm 1, the overall
complexity is O(n?). O

Finally, we present the procedure Opt_Solution which is a tree search algorithm and can be solved in
linear time. We define an array SOLUTION(j) as follows: SOLUTION(j) = k if and only if node j is
covered by a subtree rooted at k.

Procedure 1.3 Opt_Solution;

begin
k:=0; STACK :=0;
for j:=0upton do
begin
if (j > LAST(k)) then
pick k from STACK such that LAST(k) > j7;
if (Bjx = 0) then {comment: B = (B;;) is the optimal basis}
put k to STACK;
k=
end if
end if
if (Bjk = 0) then
put k to STACK;
k:=j;
end if
SOLUTION(j) = k;
end
end

One remark we would like to make here is that the center of the subtree at k can be specified by defining an
array LOCATION (k) in the procedure Find_y; as follows: LOCATION{k) = i if and only if the subtree
rooted at k is served by a concentrator located at i¢. Then LOCATION(SOLUTION(j)) specifies the
location of concentrator that serves node j.



4 Computing the LMV Reduced Cost

Let m; be the dual variable of node 7,7 = 0,1,2,---,n, in (P). Then we have

-

o= max( m—er)
JET
= rgl,gk(;n—rigi;w&)

= maxX maxi Ty — Ci
r(T)=k €T (Z i~ <r)
JET

- max max W'—Ci
max max (3 - ci)
- r(T)=k jET

— $
max 7,

where

% = max () m—ch). (4.1)
r(T=x €T

Given node k, let i € T (k). For the LATN Design problem, we define

max E Cijx;
JET(k)
st zp 2 z5, jeT(k)\{i}

(Si(h) Y. diz;<h
JET(k)
T = 1

z; € {01 l}a
where &;; = m; — ¢;j and ¢;; is defined in (3.1).

We use Pr;)(i, k, h) to denote the optimal value of (Si(h)) ( see (CTK P) in Section 5 for detailed discussion
about notation). Then, it follows from (3.1)—(33) and (4.1) that 7; for the LATN Design problem can be
obtained as follows:

% = max {Pre(i, k, h') - £}, (4.2)

Hence, a critical step in computing v; for the LATN Design problem is to solve a subproblem (SL(h)).
When i = k, (Si(h)) is the TKP discussed by Cho and Shaw (9], Johnson and Niemi [15], Lukes [17],
Shaw [1], and Shaw and Cho [22]. In particular, Cho and Shaw [9] proposed an efficient Depth~First dynamic
programming algorithm that runs in O(|T(k)|k) time to solve the TKP. In general, for i € T(k) (or k € P[i,0}),
we call (S;(h)) the Centered Tree Knapsack Problem (CTKP). In the following section, we show that for fixed
i, the CTKP (S;(h)) can be solved recursively from an optimal solution of (S:’i (h)) in O(|T(k)\ T(pt)|h)

time for all k € P[i,0]\ {i}. Consequently, we are able to compute v, through (4.2) and finally obtain ;-
However, all (Si(h)) are related to {mili =0,1,2,---,n}, which are updated in the reverse order of node label
in Algorithm 1. Therefore, all (S{(h)) with i € T'(k) have to be solved in an on-line fashion. The following two
procedures, Find_y; and Update_v; resolve these difficulties. Technically, we define d = min{d;|; € V\{0}}.

Procedure 1.1 Find_y;;

begin



compute Prx)(k, k,h)forall h=d,d+1,---, H;
if (k #0) then
for (i € T(k)\ {k}) do
begin
compute Prx)(i, k, h) starting from Pra(i,pi, h) forall h =d, d+1,---, H;
end

.. : ty _ iy,
Np = ilerf}‘?k{) 11;2)'("{1’1'(;;)(1, k,h) — Fi};

end if
end

Procedure 1.2 Update_v;;

begin
w := p;
for (i € T(w)) do & =2k — 7
for (i € T(k)) do
begin
forh:=dupto H do PT(k)(i, k,h):= PT(k)(i, k, h) -7
end
end

Consequently, we have the following main results.

Theorem 2. Algorithm 1 solves the LATN Design problem (D) in O(n?H), where H = h™.

Proof: The correctness of Algorithm 1 is given in Theorem 1. Because of Lemma 3.1, we only need to
estimate the total complexity for the procedures Find_y; and Update:y;. We will show in Theorem 3 that
for a given k, Pp(x)(i, k, h) can be computed in O((IT (k)| = |T(pL)|)H) time by starting from Prx)(7, pi, h) for
h=d,d+1,---,H. Therefore, each Find_y; takes O(|T(k)|H)+ O( Z (T (k)| — |T(P}))H) + O(nm)

i€T(k)\{k}
time. Hence, the total complexity of Algorithm 1 for performing the procedure Find_vj is

0> _(IT(k)|H + Y. (T®) = ITE)DH)}
k=0 f€T(R\{k}

= O (TGIH + S (TR = ITE)DH)}

ke P[i,0\{s}
= 0D _(IT()| + |T(0)| - IT(H))H}
1=0

= O(n’H).

Moreover, since each Update_y; takes O(|T(pf)| + |T(k)|H) = O(nH), the total time taken by Algorithm 1
for performing the procedure Update_y; is O(n?H). Therefore, the overall complexity taken by Algorithm
1 for solving the LATN Design problem is O(n*H). O

5 Solving the Subproblem for the LATN Design Problem

Let T be a subtree of T(k) rooted at k and i € T be the center of the tree T'. For any v € T', we define

Pr(i,v,h) = max Z Cijx; (5.1)
jeT



st >y, JE€ T\ {¢} (5.2)

(CTKP) D dizi <h (5.3)
JET
r, =1 (5.4)
z; € {0,1}. (5.5)

Then our objective is to find the optimal value Pr (i, k,h) of the Centered Tree Knapsack Problem
(Si(h)) using a dynamic programming algorithm.

We can solve (Si(h)) by the depth-first dynamic programming algorithm by applying the following recur-
sive rules which are similar to ones for the TKP discussed by Cho and Shaw [9];

1. (Initialization)
.. ci if h>d;
Puiy(i i, h) = { —00 otherwise

2. (Forward move to expand T)
ForvgT and p}, € T,

PTU{v}(iyvah) = PT(i)piah_dv)+Eiv if h > Z dj
JEP[i,v]

3. (Backward move to visit p, from v)
For v € T\ P[i, k],
Pr(i,pv, h) = max{ Pp\7(v)(%, pv, h), Pr(i,v, h)}.

Suppose that we have solved a TKP (S}(h)) on T'(i). It is important to observe that, for all k € P[i, 0]\ {:},
the problem (Si(h)) can be solved from an optimal solution of (S;,v (R)) as follows:

Step 1)  Perform a ‘forward move’ from node pi to node k, by applying

Prpiyuqey (i By b) = Priy(ipi b —di) + 6 if B> > d
JjEP[i,k}

Step 2)  Apply the depth-first dynamic programming algorithm by using the above recursive rules on T'(k)\
T(p}) to find Prgx)(i, k, h).

To find the optimal solution for (Si(h)), we need to define the so-called index Ir(i, v, h) corresponding to
Pr(i,v,h) for all v € T(k) as follows:

1. (Initialization)
I{,-}(i,i,h) =1 if h>d;
*

2. (Forward move to expand T)
For v € P[i,k] and p, ¢ T,

1if > ) 4
ITU{p.,}(iapv) h) = JEP[i,p,]
0 otherwise

3. (Backward move to visit p, from v)
For v € T\ P[i, k],
. _ 1 if PT\T(U)(i;P07 h) < PT(ia v, h)
Ir(i,v, h) = { 0 otherwise.



We now present an algorithm which solves the Centered Tree Knapsack Problem (Si(h)) recursively,
starting from (S;),- (h)). It is important to notice that as the ‘forward move’ follows the Depth First Search
k

order and the ‘backward move’ follows its reverse order in Algorithm 1, the value Pr(z, v, h) can be uniquely
determined by (i, v, k), that is, T can be uniquely determined by v (we denote it as TV). If v has not been
visited by a ‘backward move’, then TV = {k,k + 1,---,v}. Otherwise, T® = T, where u is a successor of
v from which a ‘backward move’ visits v. Therefore, we can omit the T' from the notation and simply use
P(i,v,h) and I(i,v,h) in implementing the algorithm. This result comes from the nature of the depth-first
dynamic programming procedure.

Algorithm 2. CTKP(i, k, pred); .
{comment: i = center, k = root, pred = p}

begin
if (k #0) then
d_path := Z d;;

i€ P[i,pred)
else
d_path := 0;
end if

if (i £#k) then
Forward_Move(i, pred, k);
end if
j=k+1
while (j < LAST(k¥)) do
begin
if (j # pred) then
Forward_Move(i, p;, j);
if (j = LAST(j)) then {comment: node j is a leaf node}
w =
do
Backward_Move(i, w, py);
W = Pu;
while (LAST(w) = j and w # k)
{comment: w has no successor t such that ¢t > j and w # k}
end if
j=i+1
else
j = LAST(pred) + 1;
end if
end
end

Procedure 2.1 Forward_Move(i, j, k);

begin
d_path := d_path + di;
for h:=duptodr—1 do P(i,k, h) = —o0;
for h:=d,upto H do
begin
if (d_path < h) then
P(i k,h):= P(i,j,h — di) + Cix;
if (p;j = k) then
I(G, k,h) = 1;
end if



else
P(i,k,h) := —oc0
end if
end
end

Procedure 2.2 Backward_Move(i, j, k);

begin
d_path := d_path — d;;
forh:=dupto H do

begin
if (P(i,k,h) > P(i,j,h)) then
I(i,5,h) :==0;
else
P(i,k,h):= P(i, j,h);
I(i,5,h) :=1;
end if
end
end

With the above procedures, we can prove the following theorem.
*

Theorem 3. Ifi = k, then (Si(H)) can be solved in O(|T(i)|H) time, where |T(3)| is the number of nodes
in the tree T(3). If i # k, then the problem ( (H)) can be solved by Algorithm 2 in O((|T(k)| — |T(pL))H),
provided that the optzmal value P(i,p}, H) of (S' (H)) is given.

Proof: If i = k, then (S!(H)) is the Tree Knapsack Problem and therefore it can be solved in O(|T(?)|H)
time (see Cho and Shaw [9]). When we reroot the tree to node i, the set of nodes in T'(k) can be considered
as the set of nodes extended from T(pk) by attaching a subtree T'(k) \ T'(p}) as shown in Figure 1. Hence,
the correctness of this algorithm is obvious from the correctness of the algorithm for the TKP centered
at the root (see Cho and Shaw [9]). As Forward_Move(-) and Backward_Move(-) require O(H) time,
respectively, we only need to count the number of ‘forward moves’ and ‘backward moves’. Clearly, every node
in T(k) \ T(p}) is visited by Forward_Move( ) and if a ‘forward move’ moves into a node v(# k), then
there must be a ‘backward move’ which moves out from the node v. Hence, the total number of ‘forward
moves’ and ‘backward moves’ is O(|T'(k)| — |T(p})|). Therefore, the overall complexity of Algorithm 2 is
O((IT(k)| = IT(pp)))H). ©

Figure 1: T(k) = T(p}) U (T(k) \ T(p))

By following Theorem 3, we can see that if (S;, (H)) has been solved, then v} is obtained in O((|T'(k)| —
k



IT(p))H), where H = h™.

We now rewrite the procedure Find_y} for finding the LMV reduced cost ~; for the LATN Design problem
by using the algorithm CTKP(3, k, v) to find P(i,k,h)forallh=d,d+1,---, H.

Procedure 1.1’ Find_y;;

begin
CTKP(k, k,—1); {comment: as p¥ is undefined, we set pt = -1}
if (k #0) then
pred =k +1; {comment: pred = pi}
fori:=k+1upto LAST(k) do
begin
if (i > LAST(pred)) then
pred :=t;
end if
CTKP(i, k, pred);
end

.. . ty _ pty.
Tk = '.IET}I?('})IFSH%X {P(@, k,b") — F{};
end if
end

6 Computational Results and Data Structure

In this section, we report the computational results of the Limited Column Generation procedure for the LATN
Design problem which incorporates the depth-first dynamic programming algorithm presented in Section 4.
The algorithms were coded in C language and run on a SUN SPARC 1000 workstation. We use two of one-
dimensional arrays, the predecessor p; and the last node LAST(7) in subtree T'(i), to represent the topology
of the tree. The two-dimensional array B;; is used to store the optimal basis and the three-dimensional arrays
P(i,v, h) and I(i, u, h) are used in dynamic programming procedure for the LATN Design problem. We have
tested our algorithm on a set of randomly generated problems. To generate a tree randomly, we specified the
total number n of nodes in the tree first. Starting from the root node, we randomly generated the number of
successors of each node from an interval [0, log, n] in BFS order until the total number of nodes was met.

Two types of concentrator capacities Rl < h? < - < h™ = H were generated randomly in the interval
[H/2, H]. For each node i, we generated ¢; € [1,50], F} < F? ... < F™ €]1,1000], and d; € [1,50] if H = 500,
d; € (1,100} if H = 1000 randomly. For each arc i, we also randomly generated ¢;, F; € 1,50].

We fixed the number of concentrator types m = 3 and tested eight problems generated from the ranges
defined above. We averaged the CPU time over those eight randomly generated test problems and also
reported the worst and the best CPU time obtained in each case. The CPU time reported here is the sum of
the user time and the system time and is measured in seconds. The results are shown in Table 1.

As shown in the table, the CPU time increases approximately at a quadratic rate with respect to n and
at a linear rate with respect to H. Because of the nature of dynamic programming, the complexity of our
algorithm is actually Q(n2H) for the LATN Design problem, and we can see from Table 1 that the running
time for the worst case in each category is less than twice that of the average case, whereas the running time
for the best case is about one half of that of the average case.



Table 1. Computational results for the LATN Design problems

n H LATND

worst | average | best
20 500 1.06 0.72 | 0.43
1000 1.94 1.31 | 0.77
30 500 2.28 141 | 1.00
1000 4.25 241 1.61
50 500 6.94 3.95 | 2.68
1000 | 12.28 9.75 | 5.87
80 500 | 17.48 9.09 | 6.14
1000 y 11.29 9.20 | 6.38
100 500 | 26.61 13.79 | 8.18
1000 | 50.44 33.94 | 23.36
150 500 | 63.72 32.16 | 14.77
1000 | 112.29 66.92 | 22.20

7 Conclusions

In this paper we have successfully developed an efficient implementation of the Limited Column Generation
approach for the Local Access Telecommunication Network (LATN) Design problem which was originally
proposed by Shaw [18]. Our computational results indicate that the Limited Column Generation is a very
effective and efficient method for this kind of problems. The LATN Design model has a very special combi-
natorial structure. For example, an appropriate Lagrangian relaxation approach can yield a bound exactly
equal to the optimal value of the integer program (see Shaw (20]). In general, this model is the special case of
the general tree-partitioning problems (see Barany, Edmonds and Wolsey [5]), or the general facility location
problems (see Shaw [21]); the Limited Column Generation method is a special-purpose algorithm for this
class of problems, which essentially decomposes the problem into a series of subproblems.

Because of the NP-complete nature of the original problem, the subproblem itself is a NP-complete discrete
optimization problem. Usually, the convex hull of the integer feasible solutions can be described either by its
facets through valid inequalities or by its vertices directly. In this paper, we adopt the latter approach through
dynamic programming. Such an approach is natural and straightforward, but proven to be very effective. As
a Knapsack Problem is a special case of the Tree Knapsack Problem (TKP), the complexity of O(nH) for the
TKP (and CTKP) might be the best we can expect.
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