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Abstract

The Phase-type(PH) distribution, defined as a distribution of the time until the absorption in
a finite continuous-time Markov chain state with one absorbing state, has been widely used
for various stochastic modelling. But great computational burdens often make us hesitate to
apply PH methods. In this paper, we propose a seemingly efficient approximation method for
phase type distributions. We first describe methods to bound the first passage time
distribution in continuous-time Markov chains. Next, we adapt these bounding methods to
approximate phase-type distributions. Numerical computation results are given to verify their

efficiency.

1. Introduction
A nonnegative random variable T is said to be of phase type(PH) if T is the time

until absorption in a finite-state continuous-time Markov chain having an absorbing state. PH
distributions, which generalize traditional Erlang distributions, have been widely used in
probabilistic modelling because of their versatility and the relative easiness of numerical
implementations(cf. Neuts(1981), Shaked and Shanthikumar(1984)]. But as we can see from

equation (2) in the next section, the actual computations of PH distributions is not a simple



matter. In this paper, we propose a seemingly efficient approximation method for phase type
distributions. We first describe methods to bound the first passage time distribution in
continuous—-time Markov chains. Next, we adapt these bounding methods to approximate

phase-type distributions. Numerical computation results are given to verify their efficiency.

2. Computation of PII distributions

To represent a PH distribution formally, consider an absorbing continuous-time
Markov chain [ X(#),#>20} with state space {1,2,...,m, A}, where states
1,2,...,m are transient and state A is absorbing. The infinitesimal generator of the

Markov chain will be of the form

A —Ae
R = 1
[0 7% M
where A= [ a;lis an m X m matrix with negative diagonal elements, v;, i=1,...,m

and nonnegative off-diagonal elements and Ae<{. Here e denotes the m-dimensional
column vector (1,1,...,1)7 and 0 denotes the #-dimensional column vector of zeros. Let
(@,a,) be an initial probability vector, that is, a;= P(X(0) =1i), i=1,...,m, and
a, = P(X(0)= A). Letting T=inf {¢: X(£)= A }denotes the time until absorption, the
distribution function of T is
F(h=1—aexp ( Atle, t20. (2)

Note that if @,>0 , then F has an atom at 0 {ie. P(f=0)=a,] and is absolutely
continuous on (0, ).

There may be several ways to compute (2). One direct method is to compute the

infinite series

o0 n
exp(At) = X2 -KA,Q- 3)
n=Q N

with appropriate truncation. But this method is very time-consuming and numerically

unstable, Alternatively we may use uniformization technique[Shaked and Shanthikumar(1984)

, Yoon(1988)], in which we choose a finite A= max .;<,{Vi} and compute F by
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F= 3 (rztnug(r))%(fz—‘ﬁ, £20, )

n=(

where £(0) = a,, g(n)=aU " 'r, r,= —Ae/2 and the clements of the mXm matrix
U are
a;/A if i+j
uy; = (5)
1—y;/2 if i=j

But still the computational burden is huge.

3. Bouding first passage time distributions in Markov Chains

Consider the continuous-time Markov chain X={X(1), tx0} with the transition
probability matrix Q = (q;) and state finite space S. Let P(t) denote the matrix of transition

functions, that is, P(t)y=P{X(t)=jIX(0)=i}. Define a monotone sequence { T,, n=0,1,...}of

stopping times for X as follows :

Ty = 0 w.p.1 and

(6)
T, =min{ inf{t: X()*X(T,-), 0T, }, Toc; +4}, n =1,2,... .
Clearly for each n, T,<nd w.p. 1
. i =i
Now, letting &;= {é ;thell'wi]se and v=Qe,
-, aj -y .. N
(1—e ‘d)—'L + e "8 for i,jeS if v;#0
Pyy= Vi ! . (7D
6; if U=0
, from the observation that T,, n=1,2,..., are stopping times of X, we can easily see
that E[ P(T,;)] =P, and
Py(t) =E[ P(T ys)] =P, 120 8

, where | x! implies the largest integer less than or equal to x.
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Proposition 1 :
For any fixed t, P,(t)—=P() as 4 — 0 .

proof :
First we show that

B_l’gT [t/_,_“.:t a.s. )
Then, the proposition is immediate from (8). To show (10) note from the definition
T, that T,—T,.,<4 iff a transition of X occurs during (T,_, T,+4) . Let Z(t) be
the number of transition of X during (0t). Since T,<nd a.s., it is then obvious that

Ta2 (n—=Z(T, ) d2nd—-Z(nAa)4 a.s.

Hence,
lt/AJA—Z(t)A < Tlt/d] < lt/[“d a.s.
Thus, as 4—0 one sees that T |4 —t a,s. (QED)

Now let's consider the following monotone sequence of stopping times of the

uniformized continuous time Markov chain { X(t), t>0 }.
TO e O w.p. 1,

9
To=min{ inf{ t:N(t)+N(T,-)) }, T,y +4 1},

Let PS5 denote the transition matrix of the discrete time Markov chain obtained by observing

X(t) at A T,’s that is, P; = E[ P(T,)] . Then it is easily verified that

Py =(1-e™)I+LR)+e™™ a0
Ad
= I+1;€—-R .

We may now approximate P(t) as above by
Ps(t) =P4¥4! | (11
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For this approximation we have the following proposition in which (i)follows in a
manner similar to that in Proposition 1 and () is verified by the observation: the limiting

distribution of the discrete time Markov chain characterized by Py is the same as that of

the original continuous time Markov chain characterized by R.
Proposition 2:

(DFor any fixed A and t, P;—P(l) as 4—0.

(idFor any fixed A and 4, Pj(1) =»P(cc) as t—oo, whenever P(0) is well defined.
Note that T |4 < t with probability 1.

Let

Ty=0 w.p.1
(12)
T,=inf{ t:N(t+4)=N(t), t=>T,_,} + 4

where { N(t), £20 } is the uniformizing Poisson process. Clearly { T,, n=1,2,...} is a
sequence of renewal epochs of a renewal process and T, is the time to a gap of size 4 in

the Poisson process { N(t), 20 }. Suppose the first arrival takes place after time 4 . Then

iq ),

Ti= 4 (this happens with probability e~ Otherwise, the remaining time to T after

the first arrival has the same distribution as T, (this happens with probability 1 - e,

Based on this observation one sees that

Pe=E[ P(T) ] = (1-e™)I+LR)Ps+ eI, (13)

since when a transition occurs before time 4 , the state will be changed according to

(I+ % R) and the Markov chain starts over again with the current state as an initial state.

Solving (13), we have
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-4

- _ 1—e -1
Ps = (I RO (14)

Then we approximate P(t) by
Pg(t) = P47, t>0. (15)

Note that T [y 2t  with probability 1.

The following properties of D4(1) can be established without difficulty[Yoon and

Shanthikumar(1988)1.

Proposition 3 :
()For any fixed A and t, Pg—DP(t) as 4-0.

(i)For any fixed A and 4, Pg(t) =P() as t—oo, , whenever P(o0) is well defined.

In Ps and Ps we need to set the uniformization rate as small as possible to gain

better accuracy for the same 4. In Pat), Pst) and Ps(t), if we choose 4 such that

t/4= 2%, then to obtain le Y4 we need only k matrix multiplications.

4. Bounding PH Time Distributions

In this section we discuss the bounds for PH distributions using the mathods discussed in
preceeding  sections. Consider a Markov chain  with generator R and let

T. .-inf{t: X(t)= A, t>0) be the first passage time to 4 from some initial state X(0) =

Then F(t) = P{T..<t}=P..(t), so that all the methods approximating P(t)

can be directly used to approximate [F(t). Moreover, we can establish bounds on F(t) without

any restriction on X as in

Theorem 1
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maX{PZ:.'A(t) , PS:,A(t)} < F(t) < p(’i;,A(t) . (16)

Proof :

Since state A is absorbing, it is obvious that P{X(s)= A}<P{X()=A)} for all s<t.

Now observing that for P.,(t)
P, .(t) = E[ P{X(T ,y)=4 )1

and T lt/4) < 1t/4]14 < t as.. one immediately sees that

Pyo < P{X()=4} = TF(L).
Similarily we get Ps o < F(t). The upper bound is also true since T rty4y defined for
Pg(t) is 2 1t/d414=t a.s.

The above result seems to be very useful and illustrates the value of the approximations

PaAt), P5(t) and Pg(t).

5. Numerical Example :

(1) Generalized Erlang-2 with rates 1 and 2

Ft) = 1-2¢'+e™

O
O[t—-
[\
OO
—

- 105 —



Table 1. Bounding values for T°(t)

Time From P:(t) True Value From Ps(t)
1/8 0.0137057 0.013807 0.0139275
1/2 0.154585 0.154818 - 0.155231

1 0.399349 0.399576 0.400163
2 0.747531 0.747645 0.748138
3 0.902858 0.902905 0.903189
4 0.963687 0.963704 0.963846
5 0.986563 0.98657 0.986635
6 0.995046 0.995049 0.995078
7 0.998176 0.998177 0.998189
8 0.999329 0.999329 0.999334
22 Hoigk 0.000233 0.000587
1 reeeereees
0.8
0.6
F(t)
0.4
0.2 Q From P2
% From P6
—— True Value
0 L

0 2 4 6 8
t

Figure 1. comparison of P2, 6, true values
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