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Abstracts The automatic interpretation of awake background electroencephalogram (EEG), consisting of quantitative EEG
interpretation and EEG report making, has been developed by the authors based on EEG data visually inspected by an
electroencephalographer (EEGer). The present study was focused on the adaptability of the automatic EEG interpretation which was
accomplished by the constructive neural network with forgetting factor. The artificial neural network (ANN) was constructed so as to
give the integrative decision of the EEG by using the input signals of the intermediate judgment of 13 items of the EEG. The feature of
the ANN was that it adapted to any EEGer who gave visual inspection for the training data . The developed method was evaluated
based on the EEG data of 57 patients. The re-trained ANN adapted to another EEGer appropriately.
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1. INTRODUCTION

The automatic integrative interpretation of awake background
EEG, had been developed by the authors and presented at the
KACCs in series: quantitative EEG interpretation (Nakamura et
al. 1990), EEG report making (Nakamura et al. 1992a), and pre-
processing for artifacts detection and reduced vigilance level
detection (Nakamura et al. 1994). The proposed automatic EEG
interpretation has been in good agreement with the EEGer's
visual inspection. However, integrative interpretation or final
decision of an EEG record whether it is normal or abnormal one
is a subjective task, since the judgment for a particular record
slightly varied with the EEGer. Therefore, it is important to
develop an algorithm for decision making, that satisfies the
criteria of each EEGer who visually inspects the EEG records.
Use of artificial neural network (ANN) for automatic EEG
interpretation is profitable to overcome this problem. ANNs are
trained and have an ability to construct their internal configuration of
the knowledge without any external control (Kloppel 1994). These
features could make the construction task more simple.

The present study consists of the development of an ANN for
the integrative EEG interpretation and the adaptation of the
designed neural network for any other EEGer who visually
inspected the EEG records. The proposed constructive neural
network with forgetting factor was developed using a
combination of the dynamic node creation method (DNCM, Ash
1989) and the structural learning algorithm (SLA, Ishikawa
1990). The method was evaluated based on the EEG data of 37
patients visually inspected by an EEGer (EEGer A) and the EEG
data of 20 patients visually inspected by another EEGer (EEGer B).

2. METHOD

2.1 Data Acquisition and Visual Inspection of EEGs

The EEGs from 57 patients, aged between 18-64 years, with
various neurological disease were recorded using 16 cup
electrodes fixed to the scalp at points Fpy, F3, C3, P3, Oy, Fps,
F4, C4, P4, 02, F7, T3, TS’ F8, T4, and T6 (International 10-20
System) in reference to the ipsilateral ear electrode (A and A9).
The recording was done with the time constant of 0.3 sec, the
high cut filter of 120 Hz, a paper speed of 3 cm/sec and a
sensitivity of 0.5 cm/50 pV.
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The procedures for visual inspection are the following: ten
consecutive strips of EEG, each 5 sec long, were subjected to
visual inspection by qualified EEGers (EEGer A, H.S.; EEGer B,
A.1). The features taken into account for visual evaluation of
EEG record consisted of the frequency, amplitude, shape of the
waves in the spatial and temporal distributions of the scalp. The
criteria applied was categorized into 16 items (see Fig. 1). These
items were classified into 8 items related to the posterior
dominant rhythm, 2 items related to beta rhythm (B-more than 13
Hz), and 2 item of each of theta rthythm (8-from 4 Hz to less than
8 Hz), delta rhythm (8-less than 4 Hz) and non-dominant alpha
rthythm (a-from 8 to 13 Hz). Every item of EEG was graded
into 4 scores: normal (0), mildly abnormal (1), moderately
abnormal (2) and markedly abnormal (3). Based on the
interpretation of these items the EEGer made a final judgment
about the normality or abnormality of the record whose scores
were also assigned between 0 and 3.

For the purpose of the present study, the EEG records were
divided into two groups of data. Group A, interpreted by EEGer
A, consisted of a total of 37 EEG records and divided in 22
records for training the prime ANN and 15 other records for
testing. Group B, interpreted by EEGer B, consisted of a total of
20 EEG records and divided in 12 records for the training of the
ANN to be adapted and 8 for testing it.

2.2 Design of the ANN

The aim of the ANN is to make the integrative interpretation
or final judgment of the EEG based on the intermediate results of
the quantitative interpretation. To design the ANN we employed
3 fayers and fully connected units as for the initial configuration
(see Fig. 2). Each unit was interconnected through weights
which would be determined based on teaching signal given by
the EEGer. The input units for the ANN were 13 out of 16
items of quantitative interpretation that characterize the
visual inspection done by the EEGer. A bias unit was
introduced in both the hidden and output layer, respectively. The
input value for the bias units was fixed at one and the weights
were trainable. The output signal of the units at the hidden layer
was given through a bipolar sigmoidal function as:
SN S M

(I+exp ™) 2

where uj was the activation or input of the hidden unit j.
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Fig. 1. Five sec long time series of an EEG record subjected to visual inspection by EEGer A. The EEGer evaluates the recorded
electrical activity and categorized it into 16 items, scoring it between 0 and 3. At the same time EEG report is written, a term for
grading the whole EEG appeared first and terms for expressing abnormalities of each item succeéded afterwards.
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Fig. 2. Layers and units of an artificial neural network

The output unit of the ANN was considered to have a linear
transfer function. The final judgment made by the EEGer was
used as the teaching signal for the ANN.

The training of the ANN was performed such that the output
of the network produced the values similar to those of the final
judgment made by the EEGer. The testing consisted in verifying
the generalization capability of the ANN or its ability to return
appropriate results with data which were not used to train it. The
judgment emitted by the ANN was considered correct if the
absolute value of the difference between the teaching signal and
the output of the ANN was less than 0.5. The initial weights for
the training were sclected randomly with values ranging from 0
tol.

2.3 Training Algorithm of the ANN

The algorithm applied to train the ANN was based on a
combination of the dynamic node creation method (DNCM) and
the structural learning algorithm (SLA), named constructive
neural network with forgetting factor. The algorithm utilized the
backpropagation lcarning algorithm (BPA, Rumelhart et al.
1988), in which the error was feedbacked through the ANN layer
by layer and used to update the value of the weights at cach

layer, so that the error at the output could be minimized. The
cost function of the BPA to minimize was:

=LY Y=Ly -0y
=1 =1

where E, was the error at the output of the ANN, T, the teaching
signal, O, the output signal of the ANN, and ¢ the training
pattern.

The DNCM and the SLA were combined as follows: the
criterion to be minimized was the cost function of the SLA
(eq. (3)). The training began with one unit at the hidden layer.
The DNCM supervised the output error of the ANN to decide
when a new unit should be added to the hidden layer. Mean
while, the SLA applied the weight decay calculation, in which
the linking weights at each presentation of a training pattern were
weakened; the weights were forced to get closer to zero. Both
the grow up and the weight decay continued until the stop
criterion was achieved, and finally, the weights that were closer
to zero and did not affect the error criterion were eliminated.

A computer program was written in standard C and ran on a
Dell Computer, model 466/ME, under the DOS operating
system. To determine the most effective ANN's configuration,
different initial weights of the network were adopted, because the
cost function for the training had multi modal characteristics.
The configuration that gave the minimum cost was selected for
the problem.

2.3.1 Structural Learning Algorithm (SLA). The SLA was used
to reduce the linking weights that did not affect the output
response of the ANN,

The cost function used by the SLA was define as:

J, = %Z (E) +1Y |w,]
=1 if

The first term in eq. (3) was the cost function due to the BPA.
The second term was added to weaken the linking weights at
each presentation of a training pattern; the coefficient A was a
relative weighting and wi; was the linking weight from the unit {
to unitj (sce Fig. 2).
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A change of a weight, Aw;; (eq. (4)) was obtained according
to the generalized delta rule (/Rumelhart and McClelland 1988),
which was the partial derivative of the cost function Jr with
respect to a given weight, multiplied by the learning coefficient
(n). This operation was defined as the change of weight due to
the BPA minus a forgetting factor (g) as:

. oJ
n ow
if

where J was the cost function of the BPA (eq. (2)). The

forgetting factor, e=nA, was used to force each weight to be
closer to zero at each iteration and sgn(wij) was defined as:

—esgn (w;)

4

1 if w;> O
sgn(w; ) = 0 if w;= 0 (5)
-1 if w;< 0O

In order to obtain the corresponding changes for those
connections with the hidden units (Aw;;, Aw;) and those with the
output unit (Aw;;, Awy), it was required to take the derivative in
eq. (4) with respect to the weight.

2.3.2 Dynamic Node Creation Method (DNCM). The DNCM
was used to optimize the number of units at the hidden layer.
The algorithm automatically increased the number of units at the
hidden layer until the desired error criterion was achieved. The
algorithm began with only one unit at the hidden layer and
applied the SLA to minimize the output error of the ANN. A
new unit was added when a flattening of the average squared
error curve was detected as (see Fig. 3):

a,—a
1 1—w < A r

a,o

©®

where t, was the number of iterations after the last node was
added to the hidden layer (initially is 0), ¢ the current number of
iterations, w the width of window (in trials) over which the
trigger slope was determined and A, was the trigger slope value.
When the flatness of the error curve fell below AT , @ new unit
was added and all the new weights were randomly initialized.
The process of adding units continued until the average squared
error was smaller than the desired error C,.

I\

addition of
a new unit

avg. squared error

&

to t-w
iterations
Fig. 3. A new unit was added to the hidden layer when a

Slattening of the average squared error was detected.

2.4 Generalization and Adaptation of the ANN

The generalization or the ability of the prime ANN to
recognize patterns which were not used during the training, was
verified through the testing, by using data interpreted by the
same EEGer (EEGer A) and with data interpreted by another
EEGer (EEGer B). During the testing, the ANN passed the
testing patterns forwardly and the error between the target and
the output value of the ANN was calculated without changing the
weights.

To adapt the constructed ANN for another criteria of EEG
interpretation, it was trained again by using both data interpreted
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by EEGer A and B. The procedures used to train and test the
ANN were the same as the procedures stated in previous
sections, with the exception that the initial configuration used to
adapt the ANN was the final configuration of the trained ANN-1
(see Fig. 4b and 5a). The values of the parameters in the
algorithms were the same as the previous stage.

r_ re
ANN-1 ANN-2
‘ Trained with i . Trained with
Data A Data A and B
l \l/‘l’esting }_—9{ \Des(ing
’ Data A: 100% I | Data A 100%
Data B: 55% l ’ DataB: 90%

L J

ANN that emulates EEGer-A cn'teﬁa

L

Adapted ANN for EEGer-B critena
a) b)

Fig. 4. Block diagram indicating the adaptation procedure.

Training and testing of a) ANN-1, b) ANN-2.

3. RESULTS

3.1 Prime Artificial Neural Network (ANN-1)

The final configuration for ANN-1 was 2 units at the hidden
layer eliminating 17 linking weights (see Fig. 5a). The testing of
this ANN gave 100% of accuracy for the data interpreted by
EEGer A. But the generalization performance of the ANN, using
data interpreted by EEGer B only produces 55% of accuracy.
Indicating that ANN-1 was not proper to interpret-records for
EGGer B. Moreover, ANN-1 was tested by using the scores for
the intermediate judgment from a computerized method, for
quantitative representation and automatic scoring of the EEG
items (Nakamura et al. 1990), instead of the scores from the
visual interpretation. The automatic intermediate judgment
coupled to the ANN for the integrative evaluation of 18 EEG
records gave 77.7% of accuracy.

3.2 Adapted Artificial Neural Network (ANN-2)

Since ANN-1 could not generalize well for the data by
another EEGer, the adaptation process was performed. The
adapted network (ANN-2) was able to interpret data either from
EEGer A or B. This ANN consisted of 2 units at the hidden
layer eliminating 12 linking weights (see Fig. 5b). When the
generalization performance was verified, an improvement was
obtained, 96.5% of accuracy over the training and testing data (2
records of 57 were interpreted incorrectly for the data interpreted
by EEGer B). As can be observed in Fig. 5, the topology of both
ANN were similar in reference to the units at the hidden layer.
The adapted parts were the amount of linking connections and
the magnitude of the weights.

3.3 Value of the Parameters for the Algorithms

The value for the width of window (w) was selected as 225
iterations, the trigger slope value (A;) 0.07, the learning
coefficient (n) 0.13 and the relative weighting (L) 1x 1073 to
1x10°® (considered as a function of iteration number),
respectively.

4. DISCUSSION
4.1  Advantage of the Algorithms
The algorithms for constructing the ANN are based on the
backpropagation algorithm with co-operative use of the DNCM
and the SLA to optimize the number of units in the hidden layer
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Fig. 5. Final structure of a) ANN-1 and b) ANN-2. The dashed lines indicates the connections that were eliminated.

and the linking connections.

By using the bipolar transfer function instead of the unipolar
one, we were able to improve the convergence ratios, learning
speeds, and the generalization.

4.2 Advantage and Drawbacks Using ANNs

One of the main advantages of ANN is capability of learning
and adaptability. The ANNs are able to recognize similar input
patterns compared with the pattern that has been used during the
learning process, and can provide useful results for different
input patterns. Since the ANNs build their own knowledge
representations, it is not necessary for questioning EEGers in
order to develop an algorithm which emulates their way of
interpretation. The only necessary information needed is a set of
input patterns together with their corresponding correct answer.
Furthermore, the ANN can be simply adapted for other EEGers,
by only training it again with data which matches the desired
criteria to emulate.

One of the drawbacks that can be detected while using ANNs
is that the training itself often needs a large amount of computing
time, although that the decision making performed by the ANN is
fast. Another drawback is local minima of the cost function, that
could be defined as a point of regionally low error during
gradient descent. Since the optimization aim of the learning or

training is to minimize the quantitative error, some times this’

minimization gets trapped in a local minima. Although these
minima could not be the best possible solution to the problem,
the resulting ANN will be close to optimal. To overcome this
problem, it is recommended a proper selection of the initial
weights for the training process. For the investigation, this
problem was solved by performing several trials using different
initial values for the weight of the ANN. The best ANN which
gave the minimum error out of these trials was adopted.

4.3 Parameters of the Constructed ANN

The parameters of the DNCM that must be selected by the
designer, the windows width (w) at which the flatness of the error
curve will be verified and the trigger slope (A,) below which a
new unit must be added (see Fig 3). The selection of these two
parameters is very important and will vary according to the
problem. If the windows width is selected too large, the
convergence process takes a long time. On the other hand, if it is
too small, the algorithm adds units to the ANN in excess. For
smaller values of the trigger slope, the method takes much time
to add a new unit and for higher values, the number of added
units are too large.

Appropriate selection of the learning coefficient (1) and the
setting of the relative weighting () in the SLA is also important
since it may affect the convergence speed. If the relative
weighting is set too large, the algorithm has problem to converge
and if it is set too small, the algorithm has the tendency not to
eliminate the weights.  Those parameters were selected
appropriately by cut and try manner in this study. However,
those selections should be done theoretically in future study.

4.4 Clinical Application

There have been several attempts, computerized based model
for automatic EEG interpretation (Nakamura et al. 1992b); but
the designing of these methods for a proper final judgment must
be done with the guidance of an EEGer or physician. While
using the developed ANN's technology, this step could be
simplified. Automatic EEG interpretation systems can be used as
a support tool for physicians in the interpretation of EEG records
and could accelerate the interpretation procedure in comparison
to the conventional visual interpretation only.
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