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Abstracts Various physical limitations which intrinsically exist in the manipulator control system, for example
kinematic limits and torque limit, cause some undesirable effects. Specifically, when one or more actuators are
saturated the expected control performance can not be anticipated and in some cases it induces instability of the
system. The effect of torque limit, especially for redundant manipulators, is studied in this article, and an
analytic method to reconstruct the control input using the redundancy is proposed based on the kinematically
decomposed modeling of redundant manipulators. It results to no degradation of the output motion closed-loop
dynamics at the cost of the least degradation of the null motion closed-loop dynamics. Numerical simulations

help to verify the advantages of the proposed scheme.
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INTRODUCTION

Application of a manipulator to a certain task is often
made difficult due to the kinematic and/or hardware
limitations which intrinsically exist in a manipulator
control system. For example, the kinematic singular-
ity and work space disconnectivity belongs to the kine-
matic limitations, and the hardware limitations include
the joint travel, velocity, and torque limits. To over-
come the various kinematic limitations kinematically
redundant manipulators, which are given more degrees
of freedom than required to specify a task position, were
proposed and the control methods were developed, for
example [7]. Some recent works addressed the prob-
lem of the joint travel and velocity limits in redundant
manipulators {1, 2, 4].

In this article, we are to propose a dynamic control
algorithm for redundant manipulators which can guar-
antee the linear decoupled closed loop dynamics in the
null motion as well as in the task motion. Next, an
analytic method will be proposed to reconstruct the
control torque using redundancy which guarantees the
expected task motion dynamics in spite of some torque
saturation. Some numerical simulations will verify the
efficiency and validity of the proposed schemes.

KINEMATICALLY-DECOMPOSED DYNAMIC
CONTROLLER

Assume that a manipulator has n degrees of freedom
and are to execute a task parametrized with m-vector.
A task position is denoted by p € R" and a pose of
the manipulator is specified by g € ®*. The redundant
degrees of freedom is » = n — m. The homogeneous
velocity is reparametrized with the minimal number,
r, of parameters and denoted by q,,; called the null
velocity. The control torque is 7 € ®”. On this setting,
the dynamics of a redundant manipulators is assumed
to be of the form

T = M(q)q+ h(q,q), (1)

where M(q) € ®R"*™ is the inertia matrix, and
h(q, q) € R" includes all torque but the inertial torque.
Then, by the help of the kinematically decomposed
modeling, the standard joint space dynamics can be de-
composed into the following (open-loop) output space
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and null space dynamics [5]

JM™lr
NTM™'r

p—Jg+JIM'h (2)
dput — N g+ NTM 'R, (3)

The matrices R € R"*™ and N € R"*" constitutes
the right singular matrices of the manipulator Jacobian
J € R™*" that is

J=U[% o][R N, (4)
where U € R™*™ is the orthogonal matrix, and ¥ €
R™>™ is a diagonal matrix of the singular values of J.

The kinematically decomposed dynamic controller
has as its control law

[R(JR)‘1 |N] ( qi” )
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When there is no parametric uncertainties, it realizes
the following decoupled and linear closed-loop dynam-

1CS:

(6)
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It remains to generate those two auxiliary control in-
puts u, and unun to stabilize each motion. The de-
tailed description of the kinematically decomposed con-
troller can be found in [5].
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EFFECT OF TORQUE LIMITS ON CONTROL
PERFORMANCE

However, when the calculated control torque by
Eq.(5) can not be achieved within the torque limits,
the expected performance by Egs.(6) and (7) cannot
be anticipated. In this section, the effect of torque lim-
its, or torque saturations, on the control performance
1s to be analyzed.



Assume that s joints among n joints are saturated in
torque, that is

Tk, < Ip, OF T, > T, (8)
for i = 1,...,s and k; is an integer between 1 and n.
Then the actual control input would be
!
F=| T — k;—th element (9)
Ty — ks;—th element
Tn

When the saturated control torque is input, we have
the following closed-loop output space dynamics:

u, — (JM ™ Y)Ar
u, — JM AT

(10)
(11)

b

where (JM_l) is the m x s matrix which consists of
ki-th column of J M ™! associated to each limited joint,
and AT is an s—vector whose k—th element is defined
as T, — 7 ( or Ft) for k ranging over ky,...,k;. Note
that the matrix (JM”I) is equal to the matrix JM ™!

where M ™! consists of k;-th column of M ~! associated
to each limited joint. The above output space dynamics
follows because

JM 1+

JM ™' (t—71+7)
JM ™ lr—JM™ (7 - ) (12)
u, —Jg+ JM 'h— IM AT

As for the closed-loop null space dynamics, a similar
result is obtained as follows

dnunn = Wnut — NTM™'AT, (13)

Roughly speaking, the torque limits introduce errors

in the output motion as well as in the null motion.

Moreover, two motions are no more linear and decou-
pled.

RECONSTRUCTION ALGORITHM OF A SAT-
URATED TORQUE
Since we have redundancy, we want to compensate
the output space dynamic error, 1.e. the second term
in the right hand side of Eq. (10), by distributing it to
the unlimited joints. That is,
JM™'% = JM A, (14)
where M~ is the n x (n —s) matrix consisting of n—s
columns of M ™! associated with the unlimited joints.
By reconstructing the command torque by
" =T+ 79 (15)
where the n— vector T¢ is the vector ¥ with its k;-
th(i = 1,...,s) element filled with 0, we can retain the
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original linear and decoupled closed-loop output space
dynamics. That is,

—-IT*

JM JM™ '+ 4+ JM™ 5,

u, —Jg+ JM™h,

= (186)
from Eqgs. (12) and (14).
The effect of the reconstructed torque on the null mo-
tion is
N'M 7 - NTM 7" = f~- NTM~'%, (17)
where f 2 NTM~'Ar. Note that the second term in
the right hand side is due to the reconstructed torque.

In the meantime, JM ™! is a m x (n — s) matrix
and it is assumed that n —s > m. Eq.(14) leads to a
unique solution 7 € "% if n = m+s. However, when
n > m+ s, there exist many T’s to satisfy the equation.
A scheme to choose a unique solution is required for
practical application. One obvious method is to choose
one nonsingular square minor out of ,,_;C,, possible

square minors of JM ™!, But this may be blind choice
not to consider optimality of a certain choice. Instead,
we are to choose the unique solution which minimizes
a possible null motion degradation due to the solution
reconstruction. That is, one solution which minimizes

fvrai-rs -]

is attained as the unique solution.
Thus the problem to resolve a unique solution out of
many solutions of Eq.(14) is stated as:

find a solution +* € ®"~*
which minimizes

vrae-s] o

subject to

JM '5=d (19)

where d 2 TM AT,
Then the problem is of linear equality constrained least

square problem type, and the solution is analytically
found by (See Appendix.)

(JM"‘)+ d+ (NTM-‘Z)+

X

F-NTM (M) d) (20
(7847!)

where

Z=1I- (JM‘1)+JM‘1. (21)

Note that it is the unique minimal length solution if and
JM™! ]

only if Eq. (14) is consistent and the rank [ NT M-

iIsn—s.



Table 1. Parameters of the manipulator
length | c.o.m. | mass nertia
I(m) | r(m) | m(kg) | I(kg x m?)

1 0.3 0.15 20.0 0.15

2 0.25 | 0.125 10.0 0.0521

3 0.2 0.1 10.0 0.0333

NUMERICAL SIMULATIONS

A planar 3-dof manipulator is employed to show the
effectiveness of the proposed algorithms. The parame-
ters of the manipulator are shown in Table 1.

The controller used is the kinematically decomposed
dynamic controller which was proposed. It is assumed
that the state (g7, ¢7)7 is available from perfect sen-
sors. The outer serve loop is the simple linear controller

Pa+ Ko(pg— )+ Kp(pa —p) (22)
Qruit,d + Knutl(@nuig = Gnun)  (23)
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Unull

The desired task, p,, is to trace a circle two times
in 2(seconds) and the perimetric distance is interpo-
lated using q}lintic polynomial. The circle is centered
at (0.35,0.0)"(m) and its radius is 0.15(m). The de-
sired null motion is generated in order to maximize the
manipulability measure m(q) [7] as following

Qnuitd = kNTVm. (24)
The gains used are: K, = diag{1000,1000}, K, =
diag{10, 10}, K,uu = [100], and & = 30. The detailed
description of the kinematically decomposed controller
can be found in [5].

First simulation shows the control result in Fig. 1
when there is no torque limit. The output motion
traced the desired one well. The advantage of the kine-
matically decomposed controller is that the desired null
motion was realized without much error. Almost all the
conventional resolved acceleration controllers for redun-
dant manipulators leaves the null motion uncontrolled,
which can destabilize the zero dynamics of the manipu-
lator system. Now it is assumed that the feasible torque
for the first joint is [—200.0, 200.0}( N x m). Fig. 2 shows
control performance degradation because no considera-
tion is taken about the effect of the limit. We can see
the output velocity error in Fig. 2(b) as well as the null
motion velocity error.

The proposed reconstruction algorithm is applied to
compensate the torque saturation. The results is sum-
marized in Fig. 3, where we can see that the recon-
structed torque indeed realize the desired output veloc-
ity in spite that the first joint is saturated. Moreover,
the null motion error was also reduced much, as can be
seen in Fig. 3 (¢).

CONCLUSION

In this article, the kinematically decomposed dy-
namic controller was proposed, so that we can control
the null motion as well as the output motion. Next,
there was proposed the analytic method to reconstruct
the control input when some torques are saturated. The
expected task motion closed-loop dynamics are recov-
ered under this reconstruction. Moreover, the recon-
structed solution is the one which minimizes the error
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Figure 1. The control performance of the kine-
matically decomposed dynamic con-
troller with no torque limit

norm of the null motion dynamics. They are very ana-
lytic and efficient method as can be seen in the numer-
ical simulations.

Note that the kinematically decomposed controller
can be extended to the compliant motion controller [6].
Also, the reconstruction method can be generalized to
the inverse kinematic algorithm.
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APPENDIX A: LEAST SQUARE SOLUTION
WITH EQUALITY CONSTRAINTS

The linear equality constrained least squares problem,
called LSE hereinafter, addresses:

Given an m; x n matrix C of rank k,, an
my—vector d, and my x n matrix E, and an
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Figure 3. The reconstructed control perfor-
mance with torque limit

mg—vector f, among all n— vectors & that

satisfy
Cx=d (25)
find one that minimizes
|Ex - f|| . (26)

The characteristics and a solution of the following prob-
lem are well analyzed in Lawson and Hanson [3]. The
following theorem summarized all the analytical results.

THEOREM A.1 Assuming Eq. (25) is consistent, Prob-
lem LSE has a unique minimal length solution given
by
z*=Ctd+(EZ)* (f - EC*d) (27)
where
z=1,-cCc*cC. (28)
The vector ™ is the unique solution vector for Problem

LSE if and only if Eq. (25) is consistent and the rank

of g s n.

A full proof of the above theorem and various numerical
algorithms can be found in [3].



