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Abstracts This note proposes a robust LQR method for systems with structured real parameter uncertainty based on
Riccati equation approach. Emphasis is on the reduction of design conservatism in the sense of quadratic performance by
utilizing the uncertainty structure. The class of uncertainty treated includes all the form of additive real parameter
uncertainty, which has the multiple rank structure. To handle the structure of uncertainty, the scaling matrix with block
diagonal structure is introduced. By changing the scaling matrix, all the possible set of uncertainty structures can be
represented. Modified algebraic Riccati equation (MARE) is newly proposed to obtain a robust feedback control law, which
makes the quadratic cost finite for an arbitrary scaling matrix. The remaining design freedom, that is, the scaling matrix is

used for minimizing the upper bound of the quadratic cost for all possible set of uncertainties within the given bounds. A

design example is shown to demonstrate the simplicity and the effectiveness of proposed method.
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1. Introduction

One of the most interesting robust control methodologies
in time domain is the quadratic stabilization (QS) technique
whose essence is to manipulate the quadratic Lyapunov
functions[1]-[4]. QS methods that are the same kind of
Petersen's Riccati approach{2] have becn extensively applied
to systems with structured or unstructured uncertainty in the
same manner. It is surprising that there has been little
consideration, in QS methods, for the conservatism of
resulting control laws such as the high level of control effort
and unnecessarily high bandwidth of the closed loop. Besides
systems with unstructured uncertainty, it secms to be natural
that the reduction of design conservatism is possible for those
with structured uncertainty, remembering p-analysis including
D-scaling technique in frequency domain analysis. In this
note, emphasis is on the generalization of previous works
based on QS methods for structured real parameler uncertainty,
and the reduction of the design conservatism, in the sense of
quadratic performance, by using the uncertainty structure. An
example shows that the proposed method effectively reduces
the design conservatism and generates a practical control law
compared to the conventional approach.

2. Characterization of uncertain linear systems

Consider the following linear systems with time varying
structured uncertainty:
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%’:-:{A+AA(t))x+Bu (2.1)

AA(t) = £ 8(Y E; (2.2)

where XER", u€R™ and E; has the rank of ¢; in R"*".

Assume that 8,(-) are real-valued Lebesgue measurable

functions. In this description, A, B and E; arc assumed to be
known. The assumed form of uncertainty has frequently
appeared in litcrature for robust control. Any type of AA(‘) in

(2.2) can be expressed by the input-output(1/O) structure[11] as
follows:

AA(t) = Mn A(I) Nu (2'3)

where A(t) = diag[d:(t)1, -+, 8,{t)1,] and I, denotes identity
matrix in RY9 _In delta block, ) is repeated as many as

the rank of E;. If all the E,'s are of rank 'l', i.e.,
uncertainties are so called 'rank one uncertainty’, then the delta
block consists of only » - different uncertain paramcters. It is
noted that (2.3) is not unique because of the scaling matrix
defined by the set

S:={T|FAT " =At)forallt>0} . (2.4)



Note that I' is a block diagonal matrix with r - submatrices.
With the help of (2.3) and (2.4), we can represent all the
possible 1/O decomposition of given uncertainty as follows:

AA(t)=M A(1)N (2.5)
where M=M,I" and N=T"'N, for some T €S . Note that
I' should be a scalar if A(-) does not have the diagonal

structure. Due to the diagonal representation of parameter
uncertainties, we can define the block diagonal set S.

The uncertain parameters are assumed to be bounded in time
domain such that

[8{0)|shi, i=1,r. (2.6)

If &{*) represents a normalized variation from a nominal

value, an examplc such that A= 0.1 implies that a designer
wants the parameter to be allowed upto 10 (%) variation from
its nominal value. For the r - uncertain parameters, it is
convenient to define

A=diag[klll,---,k,l,] . (27)

A is called tolerance matrix for convenience. The allowable
variations are represented by the set

QA):={A(t)] |Alt)]= Aforallt} (2.8)

3. Robust LQR Control

3.1. Modified Algebraic Riccati Equation

It is well known fact that the classical LQR control cannot
guarantee the closed loop stability and designed performance
under parameter uncertainties. In this section, emphasis is on
developing robust control Jaws which make the quadratic cost
finite. Quadratic performance index is defined as follows:

I(A, G)= fc (xTQx + uTRu)dt , (3.1)

(]

where Q=0, R>0 and arguments mean that performance
index is evaluated when state fcedback gain G is used for the
uncertain system with A(-}. For an example, {0 ,Gror)

implies the quadratic cost obtained by LQR control for a
nominal system. It is evident that a state feedback gain which

makes I{A.,G) finite also stabilizes the uncertain system. To

establish the required results, the following assumtion is
necessary.

Assumption: The pair of (A + AAB,/Q) is controliable and
detectable.

The following theorem presents robust fecdback laws.

Theorem 3.1: (MARE)
Forsome T €8, if there cxists P >0 such that

ATP+PA+Q+NTAN-P(BR 'B"-MAMT)P=0, (3.2)

uncertain systems with any A€ (A} arc siabilized by using
the statc feedback with Gro=R™'B"P. Moreover, if
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Q+GroRGrio is positive definite, the compensated

systems are asymptotically stable and the performance index
is bounded as follows:

l(A, GRLO) < XI P Xo (33)
for any A€ SY{A), where x, denotes the initial condition of
system states.

(Proof) For V(x}=xT P x, by using the fact

NTAMTP . PMAN = NTja | 258} a1 2M TP + PM( A | /25(a) A1 /2N
sNT A28 28 M 81 2s(8) 2 81 2M TP
=NTlAN+PM|AMTP
sNTAN+PMAMTP

for A€ Q(A), where S{-) denotes the signum function, it can
be shown that

V(X) < - XT(Q + G-I‘?:LO R GRLQ) x=<0.

If Q +G’£LQRGRLQ is positive definite, then the closed loop

system is asymptotically stable. In such case, onc can obtain
(3.3) by integrating both sides of the above equation. (QED)

Remarks: When the uncertainty is time-invariant, the
asymptotic stability is guaranteed by the detectablility
condition without the positive definiteness of

Q+G{LQRGRLQ. For the existence of P>0, quadratic
stabilizabilty condition is necessary[2]. To remove the
positive definiteness of Q + G;;LQ R Grio, Q may be simply
assumed to be positive definite as in lots of literaturef9].

Note that if there is no consideration for system
variations, that is, tolerance matrix A is set to be zero, (3.2)
becomes the classical LQR solution. Hence, the term ‘Robust
LQR’ is used, which is appeared in [5].

When A=1 and [;=e¢l; for , MARE is
identical or similar to results of the classical QS technique [2].
A =1 implies that the tolerance matrix is set by the upper
bounds of normalized uncertainties. One should note that the
structural information of uncertainty is mostly ignored by
setting I' to only a scalar. The inequality in (3.3) results from
using the following extended Petersen's bounding technique:

izl

XY + Y X s X"WWTX + YW TW- 'y (3.4)
where X, Y and W are matrices with proper sizes. When it is
applied to the unstructured cases, W would be a scalar.
However, in the structured cases like the representation (2.5),
W can be generalized upto a block diagonal matrix. Note that
I’ has the same role with the scaling matrix W. It is evident
that the bounding conservatism may be reduced by selecting a
proper W with higher dimension. Diagonal scaling matrix,
which is the subset of block diagonal matrix, is introduced in
[10], however, proper selection method is not addressed
except for recommending the trial and error selection. Because
Grio is a function of T' for a given A, taking T’ as a scalar

narrows the search space for the required GgrLo unnecessarily.

This is the major difference between the proposed method and
the previous works by QS methods.



3.2. Optimization For Uncertainty Structure

In developing Theorem 3.1, a scaling matrix representing
uncertainty structure is assumed to be given. Note that the
control laws given by Theorem 3.1 are the function of TES.
It is important to note that controller has one more design
freedom, that is, scaling matrix for uncertainty structure. In
the sense of quadratic performance, arbitrary choice of TE€S
may produce the high upper bound of performance index in
(3.3). In general, high performance index implies the high
level of control effort or the sluggish convergence behavior.
Therefore, it is necessary to find TE€S, which minimizes the

upper bound, to obtain the

guaranteed best performance in the sense of quadratic
performance. However, the resulting solution should depend
on the initial states if the objective function is chosen by

xdPx, or trace(P x.x])

trace(P xox!) . To avoid this kind of dependency on initial

conditions, trace(P) instead of trace(P x,x7) has been used in

[8]. In this note, we adopt more reasonable cost index.
Generally, initial states represent the possible perturbation of
states due to disturbances in regulating systems. Because
disturbances are unknown in general, they can be assumed to
be a random process so that initial states can be. Hence, the
following assumption is made.

Assumption :

Initial state X, is a random process with known

covariance such that E[x.x1]= X, .

The following problem can be understood as an optimization
problem of the uncertainty structure.

Problem Definition:
Find TES which minimizes trace(P X,)
MARE (3.3).

subject to

Remark: X, may be considered as the initial energy
distribution. For states with large average energy, larger
weighting is embedded. When x, is unity, the formulation is
identical to the case of trace(P).

Because the above problem is well defined, it can be easily
solved by Lagrange Multiplier method. Resulting equations
arc as follows:

X,+(A-TIP)F+F(A-TIP) =0 (3.5)
I"TAT 'BD(N,FNI)=BD(MIPFPM,)TATT (3.6)
where m=8BR"'BT-MAMT and BD(Y)=blockdiag[Yy)."-.Y,] for

Yi €RY™9 which is the i-th diagonal block of Y. The
following example illustrates the function of BD(-).

Example:
viv2 0 YIyiayn ynyiz 0
Assume Tslyzvq 0|, For ¥=|yavayasl, BO(Y)=|yary22 0 |.
0 0ys Y31Y32Y33 00 oy3y

Note that equations (3.5), (3.6) and (3.3) should be solved
simultaneously for finding T', F and P. Threc coupled
equations can be solved by an iterative method. Procedures
using MATLAB functions are as follows:

(i) Guess an initial 'y, which generates P > 0 of (3.3).
Set k=1.

(ii) Set My =M,IxandN;=T; 'N. and solve (3.3) by
Pi = are(A, BR™'BT - MiAM;, Q + NJAN,] .
(iii) Solve (3.5) by Fi=lyap(A - TL P, Xo) -
(iv) Obtain Ty, by solving
Ti AT BD(NGFANT) = BD(MT Py Fe PeMO) Tiu AT,
(v) If |trace{Px~Px-1)| s €, stop iterations.
Otherwise, increase k:= k+1 and go to Step (ii).

At Step (iv), a solving function ‘fsolve’ in a commercial
package ‘Optimization toolbox’ of MATLAB is used. r-
subblock equations can be solved separately because the off-
diagonal blocks in I' consist of zero. If they are solved

simultaneously, T with nonzero otf-diagonal blocks may be
obtained. Even though the above procedures scem to be
simple, they were successful for every case we tried.

3.3. Design Example

An uncertain system with variation of two parameters is
given as follows:

— 0 14258, 0
=1 14480, -|+0‘562]"+[1]“

y:[lu]x

It is assumed that the changeable range of 0 is known as
[82(t)] s 1 and we wish to design a control law such that 9,
could be tolerated upto 30 (%) variation. Q and R are set by
[(1)8] and 0.1, respectively, as in the standard LQR design.
Uncertainty factorization is as follows:

_[ 0 158 0 T_f218 0 0
M“_[2.l8 0 2.11]’ N“‘[ 0 158211)°

and A(t):[é'lé"2 (2 ]

Hence, T has the same structure with the example in part B.

0'312 x2 0
0 1 ’

X, is chosen to be a unit matrix. To use the iteration method,
an initial T is chosen by T, =diagf0.578,0.578, 1] which

generates P>0. Fig.1 shows the optimizing results by the
presented iteration method. It shows that the fast convergence
is achieved. It should be noted that the control law obtained at
step k=1 also guarantees the robust stability and finite cost

index for any A€ Q(A). However, the resuiting feedback gain
at step k=1 is much larger than that of step k=7. State feedback
gain at step k=1, is Ggig=[25.173 9.129]. After 7 iterations

when complete convergence is occurred, the obtained scaling
matrix and a state feedback gain are as follows:

Tolerance matrix is selected such that A={

. 1.4249 - 0.4676 0
T =|-03129 0.7051 0
0

st 0| and Grig=[8.96226.7711].

1t is evident that the level of control effort using Grig is

effectively reduced. It means that the nonoptimal control law
design is unnecessarily conservative in the sense of quadratic
performance. In other words, the upper bound of the quadratic
cost is so high that the quadratic performance has little
meaning, remembering that the minimal quadratic cost
represents the optimal trade-off between disturbance rejection

and control effort. It is noted that Gy o guarantees the robust

350



performance in the sense of the bounded quadralic criteria as
well as the robust stability. It is consistent with ‘auxiliary
cost minimization problem' in thc sense of minimizing the
upper limit of cost function{7].

For many examples, the proposed optimization procedure
seems to be extremely helpful to solve MARE because the
uncertainty structure, which has been tuncd by trial and error,
is automatically determined.

4. Conclusions

We studied a quadratic stabilization method for linear
systems with structured real parameter uncertainty. We
investigated the possibility of reducing the design
conservatism by using the structure of uncertainty. We adopted
the diagonal representation of uncertainty which made it
possible to construct a set of block diagonal scaling matrices
not a scalar scaling factor as in previous QS methods. Under
the general I/O decomposition, we proposed MARE, which
was the generalized version for structured real parameter
uncertainty. It generates robust feedback laws, which are the
function of the scaling matrix and make LQ cost finite, for all
the allowable variations of uncertainty. Consequently, among
the feasible feedback laws generated by MARE, we can choose
the best by optimizing the uncertainty structure, that is,
scaling matrix to minimize the quadratic cost. Simulation
results show that unnecessary conservatism such as the high
level of control effort in the sense of quadratic criteria can be
effectively reduced by the proposed method.
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Fig.1 Quadratic cost during iteration. After 7
iterations, complete convergence is obtained.
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