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Abstracts We investigate the applicability of the theory of robust stabilization with respect to
additive, stable perturbations of a normalized left-coprime factorization to controller design of

a flexible arm with uncertain parameters.
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1. INTRODUCTION

The problem of robust stabilization with respect to
additive stable perturbation of a normalized left-coprime
factorization has been considered by several researchers!!™4,
In [1] it was shown that for the rational case this problem
has an elegant explicit solution in term of Riccati equations
in [4]) of

infinite-dimensional systems. In {3] it was shown that the

and this problem is extended to a class
problem of robustness optimization for normalized coprime
factor perturbation is equivalent to robust optimization in
the gap metric.

However, these theories only consider unstructured
perturbations, whereas in flexible structures one usually has
to take structured perturbations into account. We consider a
prototype example of a p.d.e. model of a damped arm in
which we suppose that the damping coefficient are unknown.
This p.d.e. model retains some essential characteristic,
typical of 'large flexible structures, such as uncertain
damping and point actuators and sensors, while at the same
time it is possible to obtain a rigorous mathematical
formulation in both time and frequency domain. In particular,
it belongs to the class of infinite-dimensional systems
discussed in [4].

In absence of a theory for robustness optimization under
structured perturbations for infinite-dimensional systems, we
decided to investigate how unstructured theories of robustness
optimization would work on this prototype model. We
apply the theory of robustness optimization with respect to
additive stable perturbations of a normalized left-coprime

factorization.
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The first part of investigation is the dependence of the
maximal robustness margin on the damping parameters.
Then taking a fixed parameter value to define the nominal
the

(nearly) maximal robustness margin. Then we evaluate the

model, we designed the controller which achieves

range of parameter value in which this controller maintains
closed-loop stability. The range of parameter value can be
calculated in term of the T-gap between the nominal plant
and the perturbed plant.

For the infinite-dimensional theory of robustness optimization
with respect to additive stable perturbations of a normalized
left-coprime factorization we refer to the paper [4]. The
brief outline of [1] is shown in the section 2. In the
section 3 we summarized the relevant results on relationship
to the T-gap metric from [3]). In the section 4 we explain
a flexible arm which is considered in this paper. Several
numerical results is shown in the section 5. Finally some
conclusion remarks is give in the section 6.

We use following notations in this paper. A state space
realization of transfer function G is denoted by

G=(A,B,C,D)

ot

where G(s)=D + C(sl—A)"B. The space consisting of all

or

real-rational, proper, transfer function is denoted by RH,
and Ilm is denotes the H,-norm. Let P be the controllability
gramian of GERH, and Q be the observability gramian of
G. Then Hankel norm of G, denoted by IGIH, is defined
as

|Gl = ax(PO)

where A, (-) denotes the largest eigenvalue.



2. ROBUST STABILIZATION FOR
NORMALIZED COPRIME FACTOR

This is a brief outline of the robust stabilization problem
for a normalized coprime factor plant description!}.

Given a nominal plant model with transfer function
G(s) =M '(s)R(s) where M,NEH, a suitable class of
perturbed plant is defined
§!={GA=(}Q+AM)—l(N+AN):AM,ANERH.,,,l[AMAN]L<E} .
In the case when coprime factors are normalized, that is

MM+ RN =1
the robust stabilization problem for a perturbed plant
G, € G, has following explicit solution.
There exists a controller K which stabilizes all plants

G,€ G, if and only if
2 1/2
& s I
e<|1 |[ ¥ H) @

where -lH denotes the Hankel norm. (2) means that he

maximal robustness margin eg, is given by

2 1/2
e,,,,,:(l -l[ﬁ M]lH) A).
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Further more, for e€<eg. ., = (1 - |[ N a1 ]|H) a state-space

realization of a controller K which stabilizes all plant
G,€ G, is obtained as follows.

AS+yUT'ze(c+ DF)| vlzct
- B'X | D

@

where y=¢!, G=[%]' U=1+(XZ—721), S=1+DD,
F=—S’l(B°X+D’C) and A=A +BF. In (4) X and Z are
to AX+XA-XBS'B'X+CR'C=0 and
AZ+2ZX -ZC'R''CZ+BS'B" =0
R=1+DD",S=1+D'D and A=A-BS 'DC.

solution

respectively  where

3. OPTIMAL ROBUSTNESS AND THE
GAP METRIC

Here we summarized results from [3] which we need in
sequel. For simplicity we suppose that P, and P, are in
the Prichard-Salamon class defined in [4]. The directed
T-gap is defined by
SESARNIN [LALARECARA | )
and T-gap is defined by

8T=max{31(P| ,Pz),ar(Pz,Pl)> (6)
where P, = M“ ! N‘_ is a normalized left-coprime factorization

of P (i=1,2)

In general 81(”1 , Pz) = 5,(1’2 , Pl), but if ST(PI Py <1,

then they are both equal. There exists the following
relationship between the Glover-McFarlane class of

perturbations G, in (1) and the directed T-gap ball:
-1

B{P)= {Pl: 84{P.P)< s} = {Pl = (1&71‘1 + AM) (N + AN)
:P= K 'N is a normalized coprime factorization, @)

Ay Ay EH., I[AM AN]I <e>

The main result in [3] is that a controller K stabilizes all
P, with 8P,P)<e, if and only if K stabilizes all
Pr=(01+ Ay) (R + Ay) Ay Ay EH.,

where satisfy

[AM AN] <¢. The advantage of the gap metric is that it
can be calculate (at least for finite-dimensional plan) as a

2 -block H,-optimization problem B}15),

4. Flexible Arm model and approximation

u(t)

{

J0 Satellite body

Fig.1 Schematic Diagram of the Arm

Table 1 Notation in Fg. 1

Jo Moment of inatia of the satellite body
L Length of the arm
PA | Linear Densiry of the Arm
El Flexurel Rigidity
M_ | Lumped Mass at the Tip of the Arm
J Moment of inatia of the Lumped

i Mass at the Tip of the Arm
u(t) | Applied Torque
8(r) | Angle of the Arm

In this paper we consider a flexible arm shown in Fig. 1.
A mathematical model of the arm shown in Fig. 1 is given

by following equations.

L
780) + pA[ " xtx3) s + MINLO = utt) ®
3y
El b pA{LG(t) + y(x,t)} =0 ©



The boundary conditions are given by

EI &y =M {Le(t) +y(L t)} 10)
ar ‘ '

&’ yx)

—a— =0 (11).

Using the eigenfunction corresponding to the boundary
conditions the transfer function from applied torque to the
angle of the armis obtained as follow.

G(s):ﬁ}h;m (12)

Because it has been shown in [4] that this type of
flexible arm model has a Prichard-Salamon state-space
realization, we may apply the results of [4] directly.
However, this would involve solving infinite-dimensional
Riccati equations, which is very time consuming at best
and in fact no known convegence results for the Riccati
equations of our example. They have so-called “unbounded”
B and C operators and very little work has been done on
the numerical approximation of solutions of such Riccati
equations.

So we shall take an approximation approach using the
known properties of the transfer function (12). From (12)
G represents the sum of an finite-dimensional part Gf
which contains the unstable mode and infinite-dimensional
stable part G, Further G, is nuclear, which means that it
is easy to approximate by a finite-dimensional system and
bound on error can be calculated®. For our investigation

we obtain the following G
Ag A
Gusy=o, 3 A
A =75 nﬁz:ls2+om),».s+c:)i2
For the nominal value of a=4769x 1072 We have a

(13)

bound on error p as follow.

u=|G-G,|, =|G.]. =002 (14)
Gyis rational and we can apply the results of [4] to Gy
allowing for infinite-dimensional perturbations. If G, has a

normalized coprime factorization

G,=K;'R, 1s)
then

G=Gy+G, =My (N, + Af) (16)
where

IALL;IH,G,L;'G,L<;1 an
From (17), we may conclude that

&(Gf.G) <p<l (18)
Reversing the role of G and G, we can write

Ge=G-G,=M"'(R+Ay 19)
where

lavl. s|#G |, <G| <n (20)

Hence by applying the same argument above we can

conclude

5{G.Gf)<n<1 @1
Therefore
834G, .G)=8{G.G,) 22)
Suppose that we apply the finite-dimensional theory of [1]
on Gy to obtain a controller K I with robustness margin e.
Then from the results quoted in the section 2, we see that
K; is a robust controller for G with a robustness margin
of at least e —p. In other word, replacing G by G in our
calculations incurs an error of at most p and we have
chosen to be negligible compared to the robustness margin
of Gy for our range of parameter values. This justifies

using Gy in our calculations.
5. Numerical Results

We first have considered the dependence of the maximal
robustness margin e, both on the order of approximation
of the infinite-dimensional system and on the parameter c.

Table 2 shows the dependence on the order of approximation
of the infinite-dimensional system. (o =4.769 x 107* which
is equal to the nominal values.) In Table 2 a denotes the
highest flexible mode which is included in the nominal
plant and n=0 means that the nominal plant only includes
the rigid body mode dynamics.

The dependence on the parameter a is shown in Table 3.
(The nominal plant includes the rigid body dynamics and
the first two flexible modes dynamics.)

As shown in Table 2 and Table 3, the maximal
robustness margin e, does not depend on neither the
order of approximation of the infinite-dimensional system
nor on the parameter o drastically.

For the nominal plant which includes the rigid body
dynamics and the first two flexible modes dynamics, we
choose as the nominal value o =4.769 x 1072 Then parameter
a is varied and we calculate the distance between the
perturbed plan and the nominal plant. If the distance (the
directed T-gap) between the nominal plant and perturbed
plant is smaller than the maximal robustness margin e,
then the both plant are guaranteed to be stabilized by a
maximally robust controller which is designed for the
nominal plant!l. In order to calculate the directed T-gap
we have to solve a 2-block H,-control problem which can
be a numerically hard problem.

For this reason we used the following results for the
directed T-gapP: Let G, and G, have the normalized left
and right coprime factorization.

Gl :M;lﬁl =N]Mi—| , GzzﬂglﬁzzNzMil



Define
R, = M,50, + B, , Ry = BI,N, - N\ M,
then
max (I R, Iw , Hm) P 5,(Gl,02) = (l R, Lo + H,zu)l N
where Hpg, = QiengmlRl - Qlw
For different values of «, both the upper and lower
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bounds for T-gap between the nominal plant and perturbed

plant are shown in Table 4.

Table 2 Dependence e, on the approximation order

n 0 1 2 3
Ermax 0.2256 0.3916 0.3924 0.3931
Table 3 Dependence e, on parameter a

a 4769 % 10~* | 0.5299 x 10°°[ 0.59%1 x 10>
Comax 03922 03922 0.3922

a mx 107%| 0.9538 x 107>
€max 03922 03923 0393

a 1.1923 x 107?| 1.5897 x 107%| 2.3845x 107>
©max 0393 03924 03924

a 4869x107° | 4.869x 1072

©max 03924 03924

Table 4 The upper and lower bounds for T-gap between the
nominal plant and perturbed plant

w 4769 % 1074} 0.5299 x 107 0.5961 x 1072
0.9618 0.8329 0.6791
Tgap
0.9542 0.8222 0.6633
a 0.6813 x 10°°| 0.7948 x 107°| 0.9538 x 10~°
0.4351 0.2154 0.2133
Tgap
0.4217 0.2153 02132
a 1.1923 x 107%] 1.5897 x 1073 | 2.3845 x 107?
0.2154 0.2092 0.1973
Tgap
0.2153 0.2091 0.1973
v 4869x 1077 | 4869x 1072
0.1899
TFgap
0.1899

For the nominal plant which includes the rigid body
dynamics and the first two flexible modes dynamics, the
maximal robustness margin e_, is equal to 0.3924. (n=2

in Table 2) Comparing this ¢, (= 0.3924) with the T-gap
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as shown in Table 4, we can find the rang of parameter
values in which a maximally robust controller, designed for
the nominal plant, is guaranteed to stabilize the perturbed
plant. From Table 4 it can be seen that the maximally
robust controller allows

parameter a to change from

a=4769 x 107 (the nominal value) to & =0.7948 x 107>,
6. CONCLUSIONS

In this paper we consider the robust stability analysis for
a flexible arm using T-gap. In particular we investigate the
the
unstructured perturbation to the structured perturbation. The

applicability of robustness optimization theories for

theory of robust stabilization with respect to additive, stable
perturbations of a normalized corime factorization proposed
in [1] seems to be a useful method for designing controller
even when the perturbations are structured.

The first our investigation is the dependence of the
maximal robustness margin on the damping parameters.
Then taking a fixed parameter value to define the nominal
model, we designed the controller which achieves the
(nearly) maximal robustness margin. Then we evaluate the
range of parameter value in which this controller maintains
closed-loop stability. From the numerical results the maximal
robustness margin does not depend on neither the order of
approximation of the infinite-dimensional system nor on the
parameter o drastically and the maximally robust controller
which the
damping parameter a to change from o =4.769x 1072 (the
nominal value) to @ =0.7948 x 1072

is designed for the nominal plant allows
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