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Abstract

In this paper, an unknown-input proportional integral (PI) observer is presented and its applica-

bility to the design of exact loop transfer recovery (Exact LTR) is shown.

First, a sufficient condition for the PI observer to estimate the states of systems without knowledge of unknown
input is derived. A simple existence condition of the observer is given. Under the conditions, the Exact LTR with
specified observer’s poles is achieved by the unknown-input PI observer.
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1. Introduction

The problem of estimating the state of system requires
the assumption that all system inputs are known or mea-
surable. In practice, however, there exist many situations
in which some system inputs are completely unknown. For
the system with unmeasurable inputs, many papers by con-
ventional observer have been recently published [1]-[3].

On the other hand, a proportional integral (PI) observer
was proposed by Wojciechowski [4] with the aim of desen-
sitizing the observer by asymptotic regulation of observer
error in the face of small parameter variations and step dis-
turbances, and it was shown by Kawaji and Sawada [5] that
the PI observer has the equivalent relation to disturbance
observer. Recently, the PI observer is applied to the de-
sign of loop transfer recovery (LTR) [6]-[8] and the time-
recovery is proposed by Niemann et al. [7]. However, there
is no mention on PI observer with unknown inputs.

In this paper, we discuss the design method of unknown-
input PI observer and show its applicability to the exact
loop transfer recovery (Exact LTR} problem. The sufficient
condition for the unknown-input PI observer is given. And
a simple existence condition of the observer is presented.
Under the conditions, the Exact LTR is perfectly achieved
by the unknown-input PI observer without any necessary
condition except for left invertible and minimum phase sys-
tem.

Notation

I, n-square matrix with 1’s on the diagonal and 0’s
elsewhere

Iixm nxm dimension matrix with 1’s on the diagonal of
min(n, m) and 0’s elsewhere

Oy n-square matrix with 0’s

Onxm nxm dimension matrix with 0’s

A? Generalized inverse matrix of A

2. Design of Unknown-Input PI Observer

Consider a linear time-invariant system described by

{

z(t) = Az(t) + Bu(t)

y(t) = Ca(t) @
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where z(t) € R"™ is the state, u(¢) € R™ is the unknown
input, and y(t) € R? is the output. A, B and C are known
constant matrices of appropriate dimensions, and rank B =
m and rank C = p. It is assumed that p > m and the
pair (C, A) is observable. Further, assume without loss of
generality the matrix C has the form

C= [ Cm  Opx(n-p) ]

where Cy, is nonsingular.
Consider a related system represented by

#(t) = Az(t) + By(t) + Ju(t) + Huw(t)

#(t) = Cz(t) + Dy(1)
w(t) = y(t) — C2(1)

(2)

where fi, B, C’, D, ff, and J are unknown matrices of appro-
priate dimensions.

Definition 1 : The system (2) is said to be a proportional
integral observer (PI observer) for the system (1) if and only
if
lim e(t) =0, Y z(0-), z(0-), u(-) (3)
t— 00

'I:’HOIO w(t)y=0, ¥Yw(0.) 4)

where ¢e(t) = £(t) — z(t) represents the observer error.

We can have the following relations between the system
and the observer.

Theorem 1 : The system (2} is an unknown-input Pl ob-
server for the system (1) if

b
0

A

Re/\g[ —ce (5)

] <0, t=1,...,n+p

and if there exists a matriz U € R™ such that
AU+ BC=UA
J=UB=0
CU+DC=1n

(6)
()
(8)

where Re A[-] denotes the real part of the i-th eigenvalue.



Proof :

£(t) = 2(t) - Uz (1)
From (1) and (2), the dynamics of this error obeys
(1) = A&(t) + (AU + BC = UA)z(1) + (J — UB)u(t)

Define the estimation error by

+Huw(t) (9)

And eq. (2) leads to
#(t) = CE(1) + (CU + DO)z(1) (10)
w(t) = C(=(t) — &(1)) (11)

By substituting (6) — (8) into (9) - (11), we have

£t) = Ae(t) + Huw(t)
2(t) = C&(t) + =(1)
w(t) = —CCE(1)

£(t) A

[ &(1) ] [ -c¢

a
0
i(t) = C&(t) + 2(1)

Thus, under the condition (5), w(t) — 0 and e(t) — 0 (t —
00). |
Remark 1 : For designing an unknown-input PI observer,
the matrix U is selected such that (7) is satisfied. This is
directly related with designing the Exact LTR and shown
in Section 3.

or

&(t)
w(t)

In the following, we let C = I, for simplicity. Then,
from (8)

U=1I,-DC (12)
By substitution of (12) into (6), we have

A=UA-KC (13)

B=AD+ K (14)
where

K =B~ AD

Also the condition (5) is rewritten as

]<0, :

The remained problem is how to find the matrices K and
H with the designed matrix U. This is the standard prob-
lem for designing the PI observer, and was solved systemat-
ically by Kawaji and Kim [9]. The procedure of solving the
problem is summarized in Appendix.

UA-KC H
-C 0

Re A, [ 1,...,n+p (15)

Lemma 1: For the unknown-input PI observer (2), there
exist the matrices K and H if

(i) pair (C,UA) is observable (186)
. UA Inxp | _

(i1) rank [ C 0, ] =n+p (17)

0

Next, we will consider the existence condition of

unknown-input PI observer. Substituting (12) into (7), we
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have
bcB=B (18)
In order for the matrix D) satisfying (18) to exist
rankCB =rank B=m (19)
must hold. The condition (19) requires that p > m.
The general solution of (18).can be written as
D = B(CB)? + G{I, —- CB(CB)?} (20)

where G is an arbitrary matrix.
By substituting (20) into (12), we can get

U = (In — GC){I. — B(CB)°C}

From the above equation, there exists a matrix G which
makes (I, — GC) nonsingular, and then the rank U = n—m.

Since rank B = m, there exists the left-inverse of matrix
B, i.e.,

BB =1,

Under the condition of rank U = n—m, we have Ker U N
Ker B? = {0}, i.e.,

rank [ gg]zn

Then, we have the relation

[gg g][szn—A BH In o]
— B9 —
o I, C 0 B(sl, — A) In
U(sl,-A) 0
= 0 Inm
C 0
In 0 —sD|[sI.-UA 0
o o I |L ¢ 0
It follows that
[ sI,—A B] sl, —UA
rank _ C 0 -—m+ra,nk[ c ]
Consequently, for VseC
[ sI-A B
rank | c 0 ] =n+m (21)

which means that the invariant zeros of the system (1) must
be stable.
Let the matrices be defined as

An A12 gll A12
A= , UA=1| < -~
[ A2l A22 ] [ A21 A22 ]
[ B T a
B_[B2], and G._[Gz]
Then, from (17) -
A A I,
rank[ Uc/,l I"”’]:rank Ay Ap 0 |=ndtp
0p

Cn 0 O



The matrix Ay, is rewritten as
Az = Az — LAn
where
L = {B;(CmB2)? + G2 + Cm B2(Crn B1)? }Cr,

From the assumption that the pair (C, A) is observable, the
pair (A2, A22) is observable. So, the matrix A2z is of full
rank by proper choice of K>.

From the above statements, we summary the following
theorem.

Theorem 2 : For the system (1), the unknown—input PI
observer (2) exists if

i) rankCB =rankB=1m

.. SIn — A B _ V

i) rank[ c 0]—n+m, seC
hold. O
Remark 2 : In Theorem 2, the condition ii} is equivalent
to following condition

i) rank[ SI"E,UA ] =n,YseC

ii) pair (C,UA) is observable

If I, — CD =0, then the pair (C,UA) is unobservable.
The case is obtained for example p = m, and C B is nonsin-
gular [3].

3. Exact LTR by Unknown-Input PI
Observer
In this section, we will show that the Exact LTR can be

achieved by the unknown-input PI observer. Let the system
(1) be controlled by an observer based controller.

u(t) = —F#(t)

where F is the state feedback gain and £(t) the estimated
state vector. The PI observer based control system is illus-
trated by Fig. 1.

F(s) \l

Fig. 1. PI observer based feedback control system

Assuming that the broken point is located in plant input,
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the loop transfer function is given by

Lobs(s) = F(s)G(s) (22)

where
G(s) = C®(s)B
®(s) = (sI — A)~!
is the transfer function of plant, and
F(s) = —F{¢(s)+ I K +s HC}  (¢(s)D+B+s7 H)
#(s) = (sI — A)
is the transfer function of the PI observer based controller.

The corresponding loop transfer function with state feed-
back law is given by

Log(s) = —F®(s)B (23)

The difference between the two loop transfer functions
Lobs(s) and L,z(s) is defined as the loop recovery error at
the input loop broken point

E1(s) = Lobs(s) — Loy (s)
= M;(s)}{I + J\h(a)}_l{l + F&(s)B} (24)
where

Mi(s)=F(sI-A+s'HC)™'J (25)

So, it is obvious that the Exact LTR is achieved if M(s) =
0. Eq. (25), called the recovery matrix for the Exact LTR,
is rewritten as

Mi(s)=F(sI-UA+KC+s"'HC)"'UB (26)
‘It follows that if UB = 0, the recovery matrix M;(s)

equal zero exactly.

Theorem 3 : The Ezact LTR for the system (1) is
achieved, if unknown—input observer is constructed. O

Remark 3 :
equivalent to

(A, ImJ) C Ker C

The condition of Exact LTR in Theorem 3 is

where, (/}, IAmJA) denotes the controllable subspace for the
system (A, J). This result was shown in Niemann et al. [7].
But, method for designing the observer was not shown.

4. Numerical example

We consider the following system which was used as an
example in Kawaji and Kim [9]

0.0 1.0 0.0 2.7
A= 0.0 0.0 10 |, B= 0.5
-1.6 -23 -12 -1.2
1.0 00 0.0
C= [ 00 1.0 00 ]

The state feedback gain matrix F is designed by the con-
ventional LQR method as

F=[09678 02692 0.0409 ]

In this system, the conditions of Theorem 2 are satisfied,



so that there exists the matrix G such that PI observer

is stable. Thus, the unknown-input PI observer can be
designed.
The matrix D is calculated from (20)
) 0.821  0.967
D= 0.603 —2.259
| —0.218 —~1.225
with
[ 1.000 1.000
G = | 2.000 -2.000
| 1.000 —1.000
Then, the matrix U is obtained from (12) as
0.179 —0.967 0.000
U= —-0.603 3.259 0.000
0.218 1.225 1.000

Let the eigenvalues of PI observer be { -1, -2, -3, -4,
—5}. Then, the PI observer gains K and H are obtained
from Appendix A as

6.011 —0.544 7.872 178.529
K =1 -0.090 8.411 |, H =] 0.296 —591.894
—-1.768 186.685 0.000 0.000

The other unknown parameters are calculated from (13)

and (14).
—6.011 0.723 -0.967
A= 0.090 -9.014 3.259
0.168 —188.767 0.025
1.723
~6.165 24.865

:

The result shown in Fig. 2 is the loop transfer recovery
by unknown-input PI observer, which is equal to that of
state feedback control system perfectly.

—6.805 ]

—115.547 613.169
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Fig. 2. Gain plots for loop transfer functions

5. Conclusions

In this paper, we have presented a simple design method
of unknown-input PI observer. The sufficient condition for
the unknown-input PI observer is derived. And simple exis-
tence condition of the observer is given and can be checked
by rank conditions. Also, it was shown that the Exact LTR
by unknown-input PI observer is achieved without any con-
dition except for left invertible and minimum phase system.
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Appendix A

< Design algorithm of PI observer >
Step 1 : Construct augmented matrices as

|

Step 2 : Design a matrix L. by conventional pole assign-
ment, LQG, or etc.

UA

Ipxn

Inxp

A 0,

], C.=[C 0, ]

Re ,\.-[ A.—L.C. ] <0, i=1,...,n4p

L,
L2
Step 3 : Calculate the matrices K and H

K=1I
H = nxp(L2 - Ipxncg)

where

L=



