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Abstract

A robust nonlinear control technique for brushless
DC(BLDC) motors is presented using a feedback linearizing
technique. The nonlinear mode! of the BLDC motor is first
linearized for the exactly known system by an input-output
linearizing method. Then, the robust control is designed for
the unknown parts of the system using the Lypunov second
method. By employing the proposed control scheme, the a
robust control performance against the parameter
uncertainties is obtained and therefore a robust feedback
linerizing control of the BLDC motor is realized. The
effectiveness of the proposed control scheme is well
demonstrated through the comparative simulations.

L. INTRODUCTION

Recently, brushless DC(BLDC) motor is widely utilized
in a wide range of high performance servo applications such
as industrial robots, machine tools, and aerospace actuators
because of their high power density and high torque to inertia
ratio. since the BLDC motor is characterized as a nonlinear
decoupled system while the DC motor is modeled as a linear
system, the BDLC motor is often linearized by using a stator
current control and field oriented control. However, in high
performance applications, the effects of the incomplete
current control may degrade the control performance. Thus,
the control strategies for the original nonlinear mode! have
been studied and reported in the literature[3, 4].

Feedback linerizing technique has been regarded as an
interesting approach 1o deal the control system having the
nonlinear characteristics because the nonlinear system can be
globally linearized by this technique[1]. The applications of

this technique for the control of the BLDC motor have
already been reported. However, this technique must require -

the exact knowledge on the parameters and control states of
the BLDC motor and unfortunately the BLDC motor is often
used under the environments of existing the uncertainties.
These uncertainties naturally act as a major source of
degrading the control performance.

Therefore, this paper describes a robust control strategy
for the feedback linearizing control of the BLDC motor. The

" nonlinear coupled model of the BLDC motor is first

linearized by an input-output linearizing technique and the
linear model with the bounded uncertainties is derived. Then,
the robust control using the Lypunov second method is
designed for this model. The comparative simulations are
carried out and the improvements of the control performance
is well demonstrated by these results.

1. ROBUST FEEDBACK LINEARIZATION OF
BLDC MOTOR

A. Model of BLDC motor

The BLDC motor considered in this paper is a surface
mounted type permanent magnet synchronous motor with a
sinusoidal back EMF. The nonlinear model of the BLDC
motor in the synchronously rotating reference frame can be
represented as follows{2]:

X = F(x)+Gu : m
where ‘
X ’}; u, v,
x=|x|={ i I, u_u,-l",
x3 0),
-, 4 XX,
fi® L
F(x)=| fL(x})|=] —Fx-xx-—-"x
SO gt p P
STV

G= [gl 0 } - L, L
0 g 0
In (1), the meanings of symbols are as follows:
iw iy ¢ d,qaxis currents, respectively

Va Vg d, q axis voltages, respectively
Lay Ly d, q axis inductances, respectively
o, . angular speed of motor
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J . moment inertia of the motor

B : viscous damping coefficient

T, 1 load torque

P : number of poles

ke :  torque constant.

- : linkage flux of permanent magnet,

It is assumed in (1) that the load torque T, is constant.

B. Imput-output state linerization

In order to avoid undesirabje internal dynamics, the
outputs of (1) are chosen as the ¢ axis current id and speed w,.
After some manipulations, (1) can be rewritten as

Xy = fa(x) + & (2.2)
%= L)+ B @b
whcre
A®=£x), f®= —k fz(x)~—ﬁ(x)
Pk,
8 =8, &= ‘5:7‘32

To deal with the uncertainties of the system, it can be
regarded that the nonlinear terms of the system given in (2)
are composed of the exactly known parts and uncertainties.
As aresult, (2) can be represented as follows:
= [0 () + 8l + By (x,0) ()
$y = 13 (1) + By + hy(x,0) (3.b)
where the superscript ‘o’ denotes the exactly know parts of
the system, and Mu(x, 4} and hf{x,u) mean the uncertainties
caused by the incomplete information of the system. It is
assumed in (3) that the uncertainties are bounded as
Mt <p, Jteuf<e,
where |] g denotes the Euclidean norm, and p; and p; are the
positive scalar valued functions.
For the system given in (3), the control to achieve the
input—output linearization can be given as follows:
=[v, - £ (x)}/ B2 (x) (4.2)
=y~ () & (x) 4.b)
where v) and v; are the control to determine the closed loop
dynamics of the input-output linearized system. By
substituting (4) into (3), (3) can be represented as
X =y, + h(x,u) (5.a)
=+ h{x,). (5.b)
For this system, the controls v, and v; can be given as
follows:

v,=Ke +3% {6.a)

v, = Kby + Koy + £ (6b)
where

6=x,-%, &=x-x

and the superscript ‘*’ denotes the reference value. Then, the
resultant error dynamic equation of (5) can be derived as
é, = K, +h(x,u) (7.a)
= K,e, + Kye, + Iy (x,u). (7.b)
If the uncertainties do not exist, then the closed loop system
can be operated with the predefined dynamics by the pole

placement technique. However, this can be achieved in
practice and thus the robust control against the uncertainties
is discussed in later section.

C. Robust control law
In order to achieve the robustness against the
uncertainties, the controls v; and v; can be modified as

v, =V, +wW, (8.9)
v, =V W, 8.b)
By substituting (8) into (5), (7) can be represented as follows:
¥ = AF + Bw + Dh(x,0) ©.9)
X, = 4%, + Byw, + Dyhy (x,u) (9.b)

where

X =e, ¥ =[e, é:]r
A=K, ,B=D=1,

A’O D 0
e xRl

In (9), the gain K, K3, and K; should be determined to be

-satisfied that the closed loop poles of the system (9.a) and

(9.b) lie in the open left half plane. Then, the controls w; and
w; can be chosen as

=—p, sgn(o})

W, = ~p, 5gn(0,)

(10.2)
(10.b)
where

o =B/P%, o,=B/RE,
and the matrices P; and P; are the solutions of the Lypunov
equations defined as

P4, +ATP=~Q, (11.a)

P4+ AR =-0, {(1L.b)
for any given constant positive definite matrices 0, and O,

In order to prove the stability of the closed loop system,
the Lypunov second method can be used. For the simplicity,
the proof is only given for (9.b). The procedure of the proof
for (9.2) can be achieved by the same manner. The Lypunov
function candidate is chosen as

S P
V(®) =S5 B (2
The time derivative of (12) is given as
Yo 1 otrpe  wtps
V(x,)= ‘2‘("7; B, + ¥ BX,)
ltne o -
= ‘”2“2'21 OF, + 3, BByw, + 3 BDhy(x,u)

< ‘xmm(Qz)ﬂ'fzﬁz ~%"F'B, HB_‘J’EPQ “‘ﬂBz szﬂP
2

<o @] <0 (13
where A(Qy)i» denotes the minimum eigenvalue of (.
Therefore, the stability of the proposed control scheme is
proved in the Lypunov sense.

1L SIMULATIONS AND DISCUSSIONS

In order to verify the effectiveness of the proposed
control scheme, the simulations are carried out to the actual
parameters of the BLDC motor, The parameters used in the
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simulation are given as follows:
J=0.00961[Nmsec’], B =0.5 [Nmsec], r.=9.0 [Q]
L,=L,=20 [mH], P = 16, A, = 0.506.
The poles of the closed loop system are chosen as p=-100
and p1 = - 40 for the d axis current and speed control loops,
respectively. To achieve these pole locations, K, Ks, and K;

are selected as -100, -80, -1600, respectively. The matrices P1
and P2 are chosen as

Pe P_IOO 1
TR 2T oot2s)”

Since the proposed robust control strategy inherently has a
control chattering, the switching function given in (10) is
slightly modified into the following form within the
predefined error bounds €, and ¢€: as
Wl'_“Plg—l’ Wz="ngi'
€ €,

The maximum bounds of /:(x,u) and /(x,u) are given as pl =
100, p2 = 10000.

In order to verify the robustness of the proposed control
scheme, the control performance is compared with that of the
conventional feedback linearizing control. Fig. 1- shows the
speed control performances of the conventional feedback
linearizing control and proposed control scheme under the
inertia variation of 50%. In the conventional scheme, the
overshoot of about 20% is observed. However, the proposed
control scheme provides the desired speed response even
under the inertia variations. Fig. 2 shows the effects of the
flux linkage variation in both scheme. When the flux linkage
variation is 10% of the nominal value, the steady state error is
observed in the conventional scheme. However, this can be
well compensated in the proposed scheme.

IV. CONCLUSIONS

This paper deals a robust control for the BLDC motor
using a feedback linearizing control technique. The nonlinear
model of the BLDC motor is first modified into the linear
with a bounded uncertainties by using a input-output
linerizing technique and then the robust control against the
uncertainties of the BLDC motor is designed. The stability of
the proposed control scheme is verified by the Lypunov
second method. To show the validity of the proposed control
scheme, the comparative simulations are carried out and the
effectiveness of the proposed control scheme is well
demonstrated by these results. In order to practical usefulness
of the propesed control scheme, the experimental
verifications should be considered as a further research
subjects.
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Fig. 1 Speed responses of the BLDC motor under the inertia

variation of 100%
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Fig.2 Speed responses of the BLDC motor under the flux
linakge variation of 10%
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