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Convergence analysis of stochastic recursive algorithms

Choo, Younseok
Department of Electronic and Computer Engineering, Hongik University

Abstract/ The ordinary differential equation (ODE) method
has been widely used for the convergence analysis of
stochastic recursive algorithms. The principal objective of
this method is to associate t0 a given algorithm a
differential equation with continuous righthand side.
Usually some assumptions should be imposed to get such
a differential equation. If any of assumptions fails, then the
ODE method cannot be used. Recently a new method
using differential inclusions (DIs) was introduced in {3],
which is useful to deal with those cases. The DI mecthod
shares the same idea with the ODE method, but it is
different in that a differential inclusion is identified instead
of a differential equation with continuous righthand side. In
this paper, we brefly review the DI method and then
analyze a Robbins and Monro (RM)-type algorithm. Our
focus is placed on the projected algorithm,

1 Introduction

Suppose we are given a stochastic recursive algorithm
of the form

Ouir = 8,+a i(0,,6,40) 1)
where 8,€R", &,&R% his a R"-valued function and

{a,} numbers. The

algorithm (1) arises in many applications. For example, (1)
serves as an parameter estimator in adaptive control
problems.

is a sequence of positive real

In this paper we are concerned with the convergence
property of (1), ie., we want to identify the limit points of

the sequence {8,} generated by (1). The ODE method (4],

{5] has been one of the most powerful tools for the
convergence analysis of (1). In the ODE method we first
associate to (1) a (deterministic) differential equation

oD = weP) @
with % continuous and then analyze the asymptotic
behavior of {&#,} through the stability analysis of (2).
Usually some assumptions should be imposed on 4 and/or
the process {f, £&,} to guarantee the continuity of &,

which may restrict the applicability of the ODE method in
the sense that it cannot be used if any of assumptions

fails.

Recently Choo and Arapostathis [3] introduced a new
method using differential inclusions, which is useful to deal
with the cases mentioned above. The DI method shares
the same idea with the ODE method, but it is different in
that we associate to (1) a differential inclusion of the form

&5 e HKDH) ®
where H is a set-valued map. Any function &(+) is
called a solution to (3) if it is absolutely continuous
(therefore its derivative exists a.e.) and satisfies (3) a.e. on
a given domain, Of course, the set-valued map H in (3)
should be defined in an appropriate way so that (3) can be
used for analyzing the asymptotic behavior of {8,}.
Furthermore (3) should be a reasonable generalization of
2).

One natural way is the following [1], [2]: Define the
set-valued map H by

Ho) = Qom'l?(oﬂB) @

where 8+&B denotes the &-neighborhood of 8 and coA
is the closed convex hull of A, ie, the smallest closed
It is easy to see that
WO HE) for all 6 and H(O={h(8)} whenever &
is continuous at

convex set containing A.

6. Also H is upper semicontinuous
(usc), ie, for each 8 and any open set B containing
H(#), there exists a neighborhood A of @ such that
H{A)SB.

In the next section, a RM-~type aigorithm is analyzed
via the DI method for both unprojected (Theorem 1) and
projected {Theorem 2) cases. Theorem 1 was presented in
[3], but it is repeated in this paper for ease of
presentation. Theorem 2 shows that projected algorithms
can be handled similarly by defining suitable differential
inclusions.

2 A RM-type algorithm
First we consider an unprojected RM-type algorithm
given by

Bary = O tah(8)+o, &)
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where 8,,0,SR" and h is a R"-valued function. The

algorithm (5) is a special form of (1) and was analyzed in
{4] for the case where h is continuous. Their results were
applied to general classes of algorithms by many
rescarchers (6], [7], {8. We use the same condition on
{vy) as in [4] (see [7] also) and identify a differential

inclusion limit.

Let t,= £, and let 0%+ % =Li(6,,1).8, Le,
a piecewise lincar interpolation function with interpolation
steps {a,} such that 6%t,)=8, and 6%D=0, for
#{0. Define & sequence {6"( )} of left shifis of 6% )
by 0%D=06%(t+t,). B )is a piecewise constant
interpolation  function such that (=8, for

el t,,t,)and B°(D=0 for 0. Define

{8™(+)) in a similar manner.
Given a set-valued map - F from an interval [ to the
subsets of R, define 1]
Lﬂt)dl:a (f/(t)dt: J/ is an integrable selection
from F},

The following assumptions will be used for the
algorithm (5).

(A1) 2.0, a0 and goa.mw.

(A2) k is Borel-measurable and bounded on bounded sets.
{(A3) {8,) is bounded a.s.

(Ad4) For each T>0
:
sup { ! ‘Z_).v,-l: n{k<m(n, N} as

where m(n, T=max {k E>n, g‘aﬁﬂ.
Define a set-valued map H by
H) = Q“wh(0+eB). (6)

Then we have

Theorem 1: For the algorithm defined by (5), assume
(A1)-(Ad) hold. Then each sequence in {8*(-)} has a

convergent subsequence amxi the limit of any convergent
subsequence is a solution to the differential inclusion

Ay e HAY) o)

on‘ (—o0,00) as.
Proof: See {3].

Next we consider a projected RM%ype algorithm, let G
be a constraint set satisfying KC below,

(KC) G={8 qL6)<0, 1<i<s)., G is bounded, convex

and g{ +) is continuously differentiable for each 1<i<s,

At cach 8e4G, the gradients of the active constraints are
linearly independent.

The the projected version of (5) is
Op1 = 2o(8 +a KB+ ®
where x{-) is the projection operator onto G. To deal

with (8), we need an operator describing the motion of the
limit process on the boundary. Therefore define (4}

~ . 2 {0+ 3R(O)—8
%) =t TALEIOIZE

Then #(Ah(6)) is a projection of the vector field % onto
G at 08 and defines a tangent vector at 660G when
h{(8) points outside of G.

Define a set-valued map H +by

H o) = Qooo;(h(a-l-eB)). ©

Then H zis usc in 8 with convex values. Using the
idea in [4], we can prove the following theorem. Since G
is compact, (A3) is not needed.

Theorem 2: Consider the projected algorithm (8) subject
to (Al), (A2), (A4) and (KC). Then the conclusions of
Theorem 1 continue to hold with the differential inclusion
(7) replaced by -

KD = HLo(1) a0
where H s as defined in (9).

Proof: For simplicity, assume s=1. For the case s)1,
see [4). Let £, be the null sct where (A4) is not satisfied

and fix @&, Write (8) as
Gerr = O,ta 8)+v te,
where e, is the projection error given by
ey = 25(0,ta MBIt )—(0,+a(8)+v).

Let EY( - =Li. {( }j:e,-,:,).:) and define {E™(*)) to

be a sequence of left shifts of E° -) such that
EY)=E"(t+t,)-E%t.), for fz—t, and E%8
=-EMONL{n)) for #—1,. Define V®(~) and {V*(-)}
exactly in the same way. Then for f2—¢,

8(D= 0"+ f, W T"(Nds+V(D+E"(H. (D

It is not difficult to see that {8"(-), V*(-)},E"(-)} is
equicontinuous and pointwise bounded on (—oo, 0}, Let
{8(-).V(+),E(+)} be the limit of a convergent
subsequence (again indexed by #). We consider two cases.
First, assume &H&G® on [ #,,2;,] . Then, by the

uniform convergence of 6% <) to & -:) on finite
intervals, there exists N such that 8™(HeG® for all
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te[ t,,t,] and =N, which in turn implies 8(*) is a
solution to the differential inclusion & HeH(6()) on
[ t,.t;] by Theorem 1. Second, assume &()=dG on
[ #5800, Let

44D = K 8" (D)— h G ).
Then

b — L
8%t —0"(ta)= [ "M T (Mas+ [ "4 ()as

+ V()= V(43 +EX (1) —E™(t).(12)

V*( - ) converges to the zero process uniformly on finite
intérvals by (A4). Taking limits on both sides of (12) and
using the fact that 4,(#) is perpendicular to 3G for all

t, we have
Keo-otd = tim [ HH BTNk,

Clearly 6(-) is Lipschitz continuous. Let &>0 and let
& exist at fe(t,,¢;). Then there exists &0 such
that for all £'e(f,f+4)

aer-00) e [ (HAKO +eBYds

= (' —)(H {&1))+eB).

Therefore & f)eH L&) and this completes the proof.
Q.ED.

3 Conclusions

In this paper we briefly reviewed the DI method, which
is quite useful to deal with stochastic recursive algorithms
to which the ODE method cannot be applied. The main
result of this paper is the analysis of the projected
RM-type algorithm given in (8). Theorem 2 reveals that
projected algorithms can be handled similarly by defining
suitable differential inclusions.
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