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Introduction

The endothelium formed on the inner susface of the
artificial graft bear the hemodynamic stress with changing
the alignment of endothelial cells. Previous studies of
morphological changes of endothelial cells have been
focused on the molecular biology of adhered proteins in cell
attachment and movement [1-4]. Micro-pipette aspiration
[5, 6, centrifugation of cells {7, 8], and exposure of cells to
fluid shear stress [9-14] are used to measure the
morphological changes and biochemistry of endothelial
cells. According to these studies, endothelial cells are
oriented with the flow direction under influence of shear
stress and become more elongated when exposed to higher
shear stress [15, 16} )

The objectives of study is to develop the real-time
image processing system to investigate the morphological
changes of endothelial cell with shear stress including three-
dimensional measurement of morphological changes of

endothelial cell.

Real-Time Image Processing System
with Laminar Flow Chamber

Cell shape changes and motion were examined by a
CCD camera (LK-636, TOSHIBA, Japan) attached to the
microscope and connected to a image grabber (MIPS,
medical image processing system, Choong Wae Medical,
Seoul), IBM PC, monitor (SuperVision Pro 217, Dac Woo
Electronics, Korea) and video recorder (Chromatic Series,
Hitachi, Japan) [17].

The flow chamber is mounted on the stage of a
inverted microscope (IMT-2, Olympus, Japan). The flow
chamber is connected to the flow circuit by two 4 mm 1L.D.

ports. Flow is generated by a roller pump (MasterFlex L/S

Drive with Easy Load™ head, Cole-Pharmer Instrument

Co., Chicago, IL) between two reservoirs.

Three-Dimensional Morphology Analysis

To investigate the mechanotransduction of endothelial
cells, live-cell real-time imaging of endothelial cell surfaces is
very important to reveal the dynamic nature of these
structures when they are subjected to defined flow shear
stress [18). Three-dimensional morphological information,
such as cellular height, is critical to study the morphological
changes of endothelial cell with shear stress. MIPS (medical
image processing system, Choong Wae Medical, Seoul} was
modified to study the three-dimensional height information
from two-dimensional microscopy image. MEFCS
{microscope focus control system, Choong Wae Medical)
and stepping motor (M062-FD-335, Superior Electronics,
Bristol, CT) were connected to MIPS and controlled the
fine-adjust nut of the microscope (IMT-2, Olympus, Japan).
Twenty sequential images of cellular morphology, taken by
turning the fine-adjust nut with stepping motor, were
automatically stored in the host PC and the pixel-by-pixel
substractions of gray values of sequential images were
accomplished in the MIPS. A schematic block diagram of
MIPS and MFCS system was shown in Figure 1.

Results and Discussion

The contours of the targer cell at the specific height
level were collected and reconstructed to analyze the
morphological parameters of cytochalasin D-treated human
umbilical vein endothelial cells. Figure 2 shows the
sequential images of cells acquired with MIPS and MFCS
and Figure 3 shows the edge of endothelial cells from

Figure 2. Figure 4 summarize the three-dimensional
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Figure 1. Schematic block diagram of MIPS and MFCS system.

Figure 2. Sequential images of cells acquired with MIPS and MFCS.
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morphology of cytochalasin D-treated endothelial cell with
shear stress. Cellular height of control culture was shown in
Figure 4 (A). The height of cytochalasin D-treated
endothelial cell is shown in Figure 4 (B). The height of the
cell after 5 minutes exposure of fluid flow and 60 minutes
exposure of fluid flow is shown in Figure 4 (C) and 4 (D),
respectively.  The height of cytochalasin D-treated
endothelial cells was increased about 3 times compared to

that of the control cell.
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