분류번호	III_D_33
군규먼오	III-P-33

제 목	d-Limonene and Cineole Inhibition of Benzo(a)pyrene-Induced Mutagenicity and Lipid Peroxidation
연구자	Eun-Mee Kang, Sung-Bae Park ¹ , Sang Geon Kim and Ki-Hwa Jung*
소속	College of Pharmacy, Duksung Women's University, Seoul 132-714 Korea Seoul Metropolitan Government Institute of Health and Environment, Seoul 137-130, Korea
내용	

The present study was designed to compare the effects of d-limonene and cineole on the benzo(a)pyrene (BP)-induced mutagenicity, BP metabolism and lipid peroxidation. Modified Ames assay was employed to evaluate the inhibitory effect of d-limonene and cineole on the BP-induced mutagenici ty. The number of revertant-bearing wells was decreased by 44 \sim 77% in the presence of both BP and d-limonene compared with that of BP alone wherease cineole decreased the number of revertant-bearing wells by 28 \sim 45% at the concentrations between $2\mu\mathrm{M}$ and $2\mathrm{mM}$. d-Limonene suppressed BP metabolism by 16, 26 and 55% at the same concentrations. The ECso values for d-limonene and cineole in inhibiting lipid peroxidation were 2.0 mM and 16mM respectively, as assayed by thiobarbituric acid method. The pre sent study showed that d-limonene and cineole have common antimutagenic effects although d-limonene appeared to be more effective than cineole in suppressing mutation and lipid peroxidation. The results suggest that the antimutagenic effects of d-limonene and cineole may be associated with alternation in enzyme activities and with inhibition of lipid pero xidation.