발표 예정 논문

Preparation and applications of bulk cubic RFe₂ Tb-Dy-Fe magnetostricitve single crystals

Abstract

Magnetostriction is the change in any dimension of magnetic material caused by a change in its magnetic state. Since the discovery of large magnetostrictive strains in dysprosium, terbium and their alloys with iron, attention has been given to Tb_{0.3}Dy_{0.7}Fe₂ which is highly magnetostrictive material for applications by virtue of its high Curie temperature and in some cases, lower magneto-crystalline anisotropy, suitable for devices at room temperature with relatively samll applied field. It has been the object of a series of experiemental studies since it is a desirable candidate for use in commercial transductive devices, ultrusonic transducers, microstoning devices, as well as smart materials etc. As the magnetic anisotropies are encountered in this special alloy, grain-orientation crystal or single crystal is essential for achieving high magnetostriction. It is known that single crystal Tb_{0.3}Dy_{0.7}Fe₂ can be obtained by an induction free standing melt zone (FSMZ) or modified Bridgman-Stockbargers method, however, the contamination and twin structure make it difficult to get high-qualit single crystals.

Bulk Tb_{0.3} Dy_{0.7} Fe_{1.95} single crystal has been prepared, completely without contimination, by Hukin's magnetic levitation cold crucible in Czochralski techniques during our researches. The starting materials, Tb (99.95% wt), Dy (99.98% wt) and Fe (99.96% wt), are used to synthsize the prescursor alloy. The weight of each loading is generally 120-160g. Seed crystal can be obtained by using the neck-in and elimination method with a pure iron bar (1mm in diameter) at the very beginning of crystal growth. Single crystal, growth with this seed crystal of $(11\overline{2})$, can eliminate the twins which are usually existing in Terfenol-D and show a

high magnetostrictive performances. X-ray diffraction analyses demenstrates that the single crystal is pure cubic Laves RFe₂ phase with $Fd3m(O_h^7)$ structure. Elements composition researches are carried out by the combination of the chemical analyses, eletron microprobe analyses and atom absorbspectral analyses. Microstructures are studied by X-ray diffraction and electron scan microscope analyses. Results of growth conditions and single crystal analyses are shown in the following:

```
1) Pulling rate
                              0.1-10mm/min.
                             30-50r/min_{o}
2) Rotaion rate
3)P/R
                             <1/5KW
4) Power supply
                             15-20KW.
5) Inducing F.
                             100 - 120 \text{KHz}
6)Size
                             \Phi 10-15mm.
                             L 120-150mm
                             80 - 100g_{\circ}
7)Weight
9) Direction
                            (11\overline{2})\pm 1^{\circ}
               \lambda_s = 1950 \text{ ppm}(10\text{MPa})
10)
11)
               d_{33}=2.0ppm/Oe.
12)
               K_{eff} = 0.89.
               E=67.3GPa
13)
               \sigma_b = 323.5 \text{MPa}_o
14)
```

With this high performance single crystal, prototype of microstoning device with a high displacement of 25 μ m has been designed and developed also during our past researches. And it is the first time to find that there is the superlattice structure in the cubic cell of Tb_{0.3}Dy_{0.7}Fe_{1.95} single crystal.

It has been proved that the elmination of twins in $Tb_{0.3}\,Dy_{0.7}\,Fe_{1.95}$ single crystal is a significant advance in magnetostrictive materials researches, however, the efforts for growth single crystal of (111) has not succeeded. It is believed that there is a long way (as well as an interesting way) to go in the preparation and applications of $Tb_{0.3}\,Dy_{0.7}\,Fe_{1.95}$ magnetostictive single crystals in the coming future.

摘 要

立方相 RFe₂ Tb-Dy-Fe 超磁致伸缩材料是国外 80 年代初发展起来的一类具有室温超大磁致伸缩效应(λ₅≥1500ppm)的新型稀土-过渡族元素金属间化合物功能材料。可广泛应用于声纳,雷达,高精度位移控制,机电转换,超微测量和加工等数十个高技术领域。多年来,材料制备过程中难以避免的污染,以及材料本身的磁各向异性等问题,一直是困扰和限制这类材料的商品化生产和性能提高的主要障碍。迄今为止,国外仅有美国,瑞典的几家公司可以从事以 Terfenol-D为代表的 Tb-Dy-Fe 超磁致伸缩材料的生产和应用研究。但由于其产品主要为定向结晶(孪生单晶)材料,第二相和孪晶界的影响,导致Terfenol-D实际的磁致伸缩性能与理论值相比尚有较大差距。国内虽然很早就开展过 Tb-Dy-Fe 多晶材料的探索,但始终未能有所突破。

本研究在总结前人工作的基础上,采用提拉法无污染磁悬浮冷坩埚晶体生长技术,独特的晶体成份设计、相组成控制、晶体加工和处理工艺,制备出具有当今国际先进水平的大尺寸、立方相 RFe₂ Tb_{0.3} Dy_{0.7}Fe_{1.95}单晶,其主要技术指标:

尺寸: 最大直径 Φ 10-15mm。

最大长度 L 120-150mm。

最大重量 W 80-100g。

生长方向 (112) 偏差 ±1°。

室温饱和磁致伸缩系数 $\lambda_s = 1950 \text{ppm} (10 \text{MPa})$ 。

室温饱和磁致伸缩率 d₃₃=2. 0ppm/Oe。

有效机电耦合系数 $K_{m}=0.89$ 。

杨氏模量 E=6.73×10¹⁰N/m²。

抗压强度 σ_b=325. 3MPa。

单品不仅消除了以往定向结晶材料中孪晶结构的影响,而且成功地控制了RFe。组织中的富稀土相含量,其主要性能指标明显优于

已能实现小批量生产,达到实用化研究水平。

通过本课题的研究工作,初步形成了一套全新的 Tb-Dy-Fe 合金单晶材料的成份设计和相控制的理论体系,解决了 Tb-Dy-Fe 单晶由于 X-ray 吸收因子过高而无法采用常规实验方法定向的难题,建立了包括电子探针、化学分析、光谱分析在内的 Tb-Dy-Fe 合金体系的综合成份分析方法,提出了提拉法冷坩埚生长 Tb-Dy-Fe 单晶的工艺控制参数:

拉速/转速<1/5。

拉速 0.1-10mm/分。 转速 30-50 转/分。

摸索出特殊的 Tb_{0.3}Dy_{0.7}Fe_{1.95}单晶的线切割加工和二次退火热处理工艺. 并成功地研制出国内第一台超磁致伸缩 μm 级微位移致动器原型,完成了 Tb-Dy-Fe 单晶材料从成份设计、工艺控制、晶体生长、性能分析到材料应用的一整套研究和应用探索过程。

本研究工作中,采用 X-ray 结构分析技术,首次发现了 Tb_{0.3}Dy_{0.7} Fe_{1.95}单晶中存在超结构现象。这一发现,为进一步研究晶格内部原子排布与单晶性能之间的关系,揭示 Tb-Dy-Fe 超磁致伸缩材料的微观磁化机理,提供了一个新的探索途径。

本研究工作的开展,结束了我国没有高性能、大尺寸立方相 RFe₂ Tb-Dy-Fe 超磁致伸缩材料的研究和应用的历史,填补了我国在此高技术新材料领域的一项空白。对于新一代高性能大尺寸立方相 RFe₂ Tb-Dy-Fe 超磁致伸缩单晶材料的大规模生产和应用进行了有意义的尝试。